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The present theory gives a complete picture and an exact quantitative analysis of the
whole phenomenon of the working of the blade screw.l This theory not only includes all cases
of applications of blade screws, but also unites in a continuous whole the entire scale of statas
of work conceivable for a blade screw.

For the study of the phenomenon of the working of blade screws, I adopt as fundamental
parameter a quantity which I calI relufivepitch. The relative pitch is the pitch of the trajectory
of a section of the screw blade, measured by taking the pitch of the bIade section itself as unity.
I call .spec$fcfimdim the ratio of the thrust power to the torque power of the blade screw.
The curve of the specific function, as shown in the annexed illustration,’ unfolds the com-
pleto cycle of aU tho states of the work possible for a screw. For negative values, great in
absolute value, of the rolati~e pitch, the specific function is directed towerd the origin of the
coordinates by a sensibly rectilinear paraboIic branch. Eem we find ourselves in the region
of the screw working as a brake, charactmimd by the property that the fluid stream crossing
the ama swept by the blades of the scrsw has the same sense as the velocity of the fluid
current directed on the screw. The segment of this branch of the specific function which
is closo to the origin and is indicated by dots on the annexed drawing corresponds to a
phenomenon discovered in a purely analytical manner, for the first time, by the prosent
theory, which I have named the wm!ez ring working state. This phenomenon takes placa in
the following order: One imaetiw the screw working in the above-mentioned brake stat.aand
considem the progremive lossoning of its tranalational speed. Under these conditions n moment
arrives when a surfaca of separation is formed in the wake of the screw across which there is
no fluid flow. Directly after its formation the surface of separation resolves itself into two
surfaces; and a vortex ring, the axis of which mincidea with the axis of the screw, appears in
the space thus formed. The two surfaces of separation which inclose the vortex ring move
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progressively apart, and a moment axrives when one of these surfaces crossm the space swept
by the blades of the screw. This moment corresponds to the change of sense of the fluid stream
crossing the plane of the screw, and at that moment the screw tends to make an infinite number
of revolutions. The cur-m of the speci6c function reaches the origin by a cusp. This is
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the whirling #wumwwn,’ immediatdy folkrwed by a new brake state of work represented
by a loop on the curve of the specific function. This latter state of brake work is t.arrninated
by the work of th~ screw at a fixed point, when the specific function once more reaches
the origin. The blade screw fulfills then the functions of a ventilator, a helicoidtd pump or a
helicopter. When we enter the region of positive values of the ralative pitch, the screw
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bemmes propulsive and the specific function represents the efficiency of the propeller. After
having passed a maximum, the specific function decreases rapidly, and, p=ing through zero
value, brings us to a short interval of breakage, which asymptotically goos ovor to the turbine
work of the sinew. k this lattar interval the specific function represents the inverse of the
eflicioncy of the turbo-motor. After having passed a minimum which corresponds to the
maximum of the turbo-motor efhciency, the specific function, by a parabolic branchj quMi-
rectili.near,disappears inta infinity, which corresponds to the stoppago of the screw in a current
dimctod on the screw. All this sequence of phenomena corresponds to the rotation of the
screw in ono setie. By the rotation of the screw in an inverm sens~, we obtain the series of
phenomena of reverse rotation, which forms, as it were, the reflected image of the phenomena

.

of direct rotation. The general equation of the specific function thus obtainod leads directly
to the determination of tie most favorabk conditions of sinew working in w tie series of its
applications. !t%e maxima and minima of the specific function ccmwspond exactly to the
maximum of efficiency of the different working states of a blade screw? separated from one
another by zero or iniinite vahwa of the specific function. We are thus naturaUy brought to
methods of calculation of blade screws in conditions of maximum efficiency. !I!be system of
fundamental equations obtained by us thus shows aU tho properties of the blado screwwin all
the variety of their working conditions. We thus obtain a complete solution of the whole
series of those important problems which have been standing so long owing to the requirements
of practice in the applications of blade screws, and wMA have, Up ta the present, remained
without any satisfactory solution.
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I have arrived at alI these results, on the one hand, by the conceptional dtition of the
screw problem of which the normal working conditions are the expression, and, on the other
hand, by the employment of a method of solving hydrodynamic problems, which I call the
w@icaZ4heomticd method. These two sides of the question are of such importance that I
must stop to examine them generally.

What is exactly meant by speaking of the exact solution of a problem! When a new
probIem is raised, before prmeeding to its solution two stages should be distinguished. The
firs$ the most difbxdt to reach, is that in which the thought seeks to formulate the statement
of the question. It is ody afterwards, when the problem haa been formulated, that we can,
properly speaking, approach a solution. All the great scientific conquests of human thought
have begun by a powerhd conception of the problem to be solved. The conceptional datini-
tion of a problem is distinguished by the fact that it is onIy an abstraction from the world of
our sensations, only a mental approximation ta the reality of the extarnal world. A simple
example d suflice to give point b my idea. Let us take the problem of the motion of a
rigid body. It is a well-known fact that in nature no solids exist in the absolute meaning of
mechanics. So all the mechanics of the solid is only an approximation to reality; but the
whole value of this approximation lies in the fact that numerous natural bodies approach in
certain conditions so nearly tman absolute rigidity that the established laws of the mechanics
of solids give a description of actual solids, which, in general, exceeds all the demands of the
applied sciences. The problem once stated, an exact solution can be sought. It is only of the
esactitude of the solution that there can be question. All probIems in therndves can only
be approximations to reality. That is why we should never insist too much on flmling exact
solutions of problems which present too considerable dMculties. The whole value of munerous
methods of approximation lies in the fact that the results obtained are, so to speak of the same
degree of exactitude as the conception of the problem. Important problems remain long with-
out being solved only because their very conception has not been suftkiently thought out.
~he blade screw is an example of such. A more thorough cmmption, while making the solu-
tion easier, often brings us still nearer to reality.

The empirical-theoretical method to which I have had recourse for the solution of the
screw problem, presents a certain analogy ta the general method of solving problems of the
theory of elasticity. At one time scientists tried to deduce the dastic properties of solid bodies
starting from the hypothesis of the molecular structure of bodies. But real progress in the
theory of elasticity was only obtained when this risky method was abandoned. In order to
establish the elastic properti- of solids, the modern theory of elasticity has recourse to direct
axpsriment, and, based on the data of this latter, it connects the complex cases with,the simple
one by the help of the fundamental propositions of mechanics. This+ in my opinion, is what
shcudd be done with regard to the solution of the problem of hydrodynamic resistance. Find
out the factors which depend on the physical nature of the fluid and the surfaces in cxmtact,
and for their numerical values fall back on direct experiment. Then from the knowledge of these
factors, once they are determined, the results which mechanics allow tn be established must
be drawn. I know well all the methods which have been proposed for the solution of the
problem of hydrodpamic resistance of fluids. These methods have all the following scheme:
First of all, by aid of some hypothesis the fundamental characteristics of the flow around the
solid in motion are so~mht. Afterwards the distribution of velocities in the fluid mass is cal-
culated. From the latter one iinds the pressure distribution, the resultant of which at the
surface of the body ought to represent the hydrod~amic resistance of the fluid. Thus Euler’s
method consists in supposing the flow of the fluid to be continuous and allowing a potential
function for the fluid velocity. Thii conception of the phenomenon leads to the conclusion
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that all bodies immersed in a fluid do not show any hydrodynamical resistance, which is in
flagrant contradiction ta experiment. In order to explain the phenomenon of. iluid resistance,
Helmholtz has supposed the formation behind the body of surfaces of discontinuity, to
which he had been led in studying the flow of fluids through orifices. This method has bean
developed by Kirchhoff and Lord Rayleigh. The value of the hydrodynamic resistance
obtained by this method is, however, less than that furnished by qeriment. The cause
of this divergence lies in. the fact that this type of flow is unstable, the viscosity of the
fluid destroying the surfaces .of discontinuity. Of late years W. M, Kutta~ having estab-
lished, in the case of movements parallel to a plane, the relation between the circulation
over a contour embracing a cylindrical solid and its hydrodynamical resistance, tried to
determine this latter by studying some types of flow around solids, which, although
stream-lined, furnished a ilnite value of the circulation around the cylinder. To Messrs. S.
Tchapliguine and N. Joukowski’ we owe numerous developments and applications of this
method. The authors of this theory have bean abIe to calculata the lift furnished by the
cylindrical body, but the value obtained does not folly agree with experiment. As for the
drag, it escaped their investigations. I have therefore endeavored to give a general demon-
stration of the theorem of circulation which explains this misundemtanm and which will
be found in Note ~“ at the end of this memoir. This theorem referred to above does not
furnish a zero value of the drag, and its authors arrived at this conclusion only by the fact
of supposing the fluid to be perfect, a hypothesis quite superfluous and entirely unneces-
sary for the establishment of this theorem. But tti theorem, when understood in its widest
sense, does not lead to the solution of the probIem of hydrodynamic resistance, since the values
obtained for the circulation depend on the type of flow assumed, which still remains to be deter-
mined. This latter question of the type of flow is excellently stated by M. V. Karman~ who pro-
poses to determine the hydrodymuuical resistance sta@ing from the estimation of the momen-
tum of the vortices in quincunx, which are formed behind the cylindrical solid in uniform
rectilinear motion in a fluid. This theory, applied u~ to the present only to the most simple,
cases, gives results which agree better than all the other theories with experiment. All the
attempts enumerated above, although quite erudite, can not give us the value of the hydro-
dynamical resistance for all the casea.demanded by technique, and we are always obliged to
resort to experiment for its determination. HOW ought we. to proceed when a problem of
hydrodynamical rmistance bars the way to our investigations 1 It is by the empirical-theo-
retical method that I find the means of circumventing this dif6culty. This method really
consists in reversing the question. We do not propose to calculate the hydrodynamical resiah
ante starting fromti type of flow of the fluid, but, inversely, it is the flow of the fluid that
we shall try to determine, Btartingwith the knowledge of the hydrodynamic resistmce meas-
ured experimentally. b general, the empirical-theoretical method can be characterized as
follows: AU the space in which a hydrodynamical phenomenon takes place is divided into two
kinds of regions. In some of these regions the hydrodynamical resistances are, so to speak,
concentrated; in the others they are absent. The hydrodynamical resistances once experi-
mentally measured, the connections betweau the two kinds of regions are established by means
of the general theorems of mechanics and hydrodynamics, the phenomena which take place
in the second kind of region being considered as under the laws of perfect fluids.
—
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Returning after the preoeding general omeiderat.ions to the examination of our sorew
problem, I shall begin by its defluition. Like all conceptional dtitions, this will only approxi-
mate reality to s certain degree. But the value of our formulation of the problem Iies in the
fact that it leads us to a solution of this latter whi~ satidles all the demands of the technique
of the application of blade sorews.

The folIowing, in aecordanca with the empirioal-theoretiwd method, is my conception of
the blade-sorew problem. In order to fix the ideas, I W assume that the screw is a propelIer.
I divide the slip stream created by the rotation of the Made screw into three domains. The
first is that part of the stream which is disposed forward of the screw and up to the section of
the stream which the Iocd phenomena created by the rotation of the blades have not reached.
The second domain, which contains the sorew, immediately follows the first and incloses that
part of the stream immediatdy disturbed by the rotation of the screw blades. I ddne this
second domain by the condition that the Mhrences of pressures on the two limiting eections
are amhudIyequal to the thrust produced by the sorew. The third domain is the direct pro-
longation of the second counted up to the narrowest section of the slip stream oreated by the
screw rotation. I assume that the flow of the fltid in the first and third domains obeys the
laws of perfect fluids, while the phenomena taking place in the seeond region are estimated by
direct experiment. As regards the fluid stream running out of the third region, I assume that
its velocity is progressively dissipated by the viscosity of the fluid. The abo-re enumerated
conditions constitute what I call thenormal conditi-cmrof the mrfiing of a tiladewrew. I call
neighhring comfitiom all the oircumstauces which deviate from normal conditions

The conception of a problem can only be judged by the conclusions to which it leads. The
results stated in this memoir will, I hope, be the most eIoquent evidence in favor of our con-
ception of the screw problem. I should like to mention that it has been quite impossible for
me to deaI with all the questions which my conception of the sinew problem raises. I have
conwmtrated my efforts above slI on the probkms which appear to me to be the most important
for practioe. Time iteeIf, as it passes, will, no doubt, reveal, better than I may have been
able to do here, many sides of the widespread screw problem upon whioh I have often only
touched. In many cases I may have ordy raised the veil of mystery which up to the present
has concealed so jealously from our ey= many sid= of the phenomenon of the blade screw
working, and have outlined only their gened picture. But I allow mysdf to believe that the
results which I htive obtained are fully sticient for the exact calcuhion, in full certitude, of
blade. screws of the highest possible efficiency for the states of work submitted by me h a
detailed study.

It is aLsoto be mentioned that, striotly speaking, the blade+mrew theory can only be an
integral theory, beoause in principle the probkun of calculation of the hydrodynamical resistance
is defkd by integral relations. But the present theory is rather a dif%xential theory, in the
sense that it is based on a system of differential relations. The possibility of such a simplifica-
tion is the result of some assumptions which seem to be so close to reality, by the results to
which they lead, that the transition to a necessarily more complicated intqyal 1 theory is not
practically demanded.

To some it may seem that this theo~ contains many assumptions. But I must say that
the present theory contha fewer assumptions than any earlier theory. I have only devoted
sped attantion to indicate alI“the assumptions made, whioh was often neglected. And I will
also ask that one consider alI the assumptions mad% not so much in themselves as in the wm-
sequences to which they Iead.
.— . ._. --—
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I wish also to point out to those about to verify the present theory by experinmnt two
circumstances which disturb, as it wine, the purity of the phenomenon: on the one hand, the
deformation of the screw bladm, on the other hand, the deviation of the fluid redstance from
the square law for the velocity. It often happens that when the angular velocity of the screw
increases, the blades undergo a certain distortion or flexion o~ng b the load to which tiey
are subjected. This causes a modification of the general shape of the blades, which although
genertiy small, has an immediate effect on the results of testing. A to the square law for the
velocity, it is well lmown to be only a first approximation, and can be applied only in certain
intervals of the velocity variation for which the coeflkienta of resistance ought to be directly
measured. When the coticients of resistance are taken as constant in h.rge intervals of the
valocity variation the results of the calculations raise differences which have to be attributed
to the deviation of the fluid resistance from the square law for the velocity,

In conclusion I shall give a general summary of the chief results obtained at this time in
this memoir.

Chaptar I is devoted to the establishment of the systam of fundamental equations rdating
to the blade screw. The theorems of momentum and of moments of momentum are submitted
b a critical examination in their application to the screw. A complete picture of the tlow of
the fluid in the slip stream created by the rotation of the screw is given. The examination “of
the distribution of the pressures in this fluid stream leads tQ the generalizatiomof Bernouilli’s
theorem shown in Note II at the end of this memoir. The reasons which make negligible the
mutual influence of the different sections of a blade S&indicated, It is ahovm that the eflectiwe
pitch alone, as opposed to the constructivepitch, can serve to describe the properties of the screw.
The fundamental theorem registering the losses in the work of the swew is established. The
explicit expressions of the velocities in the slip stream produced by the rotation of the smew—
which I call slip and race vd.ocitk~e calculated both forward of the screw and in its wake,
as functions of the dimensions of the screw and the coefhcients of resistance. Rigorous demon-

.—

stration is given of the fact already known, but generalized by us, that the specific function is a
function of the rcdathe pitch alone. All the general data of the empirical laws of ~uid resistance
of which use is made are stated in Note III at the end of this memoir.

Chapter II contains the general discussion of the 16 states of work which may establish
themselves for a blade screw. The existence of the vprtex ring state and the whirling phenom-
enon are established. All the fundamental functions which enter the blade-screw theo~ are
submitted to a general analytical discussion. The ggmeraloutline of the curve of the speci5c
function is axamined. FinaIIy, I have pointed out two limited cases of the work of the screw;
the screw with a zero constructivwpitch and the screw with an infiite constructive pitch.
The consideration of the effective pitches explains the paradoxes apparently realized by these
Caaes.

Chapter 111is devoted to the study of the propulsive screw or propeller. I give, first of all,”
a comparative summary of the general fornde for the working of the screw when advancing
and when standing at a tied point. I establish the fundamental proposition that wha a screw
i8 workiq at a fixd point the angles of attuck of all tie 8ection8are con8tan#,independent@ of the
angular velocity of rotution of the mew. Then the lo!ms of the screw% working power are esti-
mated. These I diwide into three classes: the fm 10SSSS,the vortex losses and the resistance
losses. The most favorable working conditions of a blade section are established. I establish
the approximate proposition that when a blade section works at its maximum of partial efE-
ciency, its slip meaaum the 10SSSS,ita efficiency is equal ta its relative pitch. ArLerect dmzdad
h given jbr choo8in# the m8t prO@Tbh odine8 ti adopt for 8CI’W biiuie 8ecti0n.8. ~ de~ with
the question of the limiting dimensions of the blades, their limited number and mutual inter-
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ference. It is shown that, for given working conditions, there tits a limit power which a
screw can employ usefully. In the analysis of these quwtions the new notion of lha.dth ratio.
is natu.dy evolved. hong other experiments, those of G. EifFel with two coupled screws,
the bringing of which nearer together @ the inveme sense of their rotation has increased the
efficiency, find a direct explanation. I then proceed to the vahation of the total work of
all the sections of the bladm. A geometrical interpretation is given to the question of the
total efficiency of a blade screw, which establishes the direct relations between the partial and
total efficiencim. I exwnine the question of the effective pitch of the entie screw. I then
pass to the integration of the work of difTerentsections of the bhde, and give a general dis.
cussion of the different conditions which may occur in this integration. After sn examination
of certain properties of the integrals obtained, I compare the working of the propeller in
forward motion with its working at a fixed point. The question of investigation of the best
contour to give to the blades is stated as a problem of calculus of variation. The problem
of design and the calculus of the dimensions of propellem is made the subject of detaiIed
study. In order to solve the fundamental relations which give the value of the angle of
attack effectively est.abIishedin each section and which can not be solwd by ordinary methods,
I have prepared a monogram with four parameters, according to M. d’Ocagne’s method of
padel tangent coordinate. A second monogram has been prepared in order to facilitate
the calculus of the function m. and the load efficiency q, but this evidently has not the impor-
tance of the former, since the relationa for which it gives numerical vahms maybe calculated
directly. The problem of the calculus and design of propulsive screws is thus entirely solved
in the widest sense for all the demands of practice. Fimdly, I handle the important question
of the SSIWtion and adaptation of screws. I am Ied to establish the new notion of t.mifm
fanzilie8 of 8cM08 divided into wmietie~. Up b the present this has generally hen limited to
screws geometrically similar. I introduce thg notion of screws which are, so to speak, hydro-
dynamically alike. When vie compare screws among thenwhq it is natural to imagine the
diilerent sections of blades in similar workkg conditions, what directly leads to functional
relations connecting ail screws of the same variety. Hydrodynamic similarity is realized when
homologous sections of the blades of the scwws of the family under consideration are geomet-
rically simiIar and when the relative fluid current is directed upon &m under the same inci-
dence. It is thus that the notion of variety of a uniform family is revealed and characterized
by the similarity of homologous blade sections, independent of their dlkctive pitches, and by the
identity of the system S(i) of effective a@es of attack of all the sections of each blade of these
screws. But the introduction of the system of s@es of attack S(i) as a fundamental character-
istic became possible when explicit relations were sstabkhed between the effective angles of
attack, the geometrical and hydrodynamicaI characteristics of screws, and their working condi-
tions, results attained for the tit time in this thesis. That is why vie can now fix in this way the
“mutual Orientations of the different st,ctions of blades whose evolutes in the plane are geomet-
rically similar. It is the latter possibility which forms the basis of the theory of uniform
families and which leads us to the solution of the delicata problem of the selection and adaptation
of screws. I am thus brought to divide screws into thm~ Mnds+ajor screws, optima or
maxima screws, and minor screws—all of which essenthdly difhw in their gtmeral propdes.
I estabIish three fundamental relations connecting all the screws of one vsxiety and allowing of
a direct solution, by the reading of a simple diagram, of all the infinite series of screws satisfy-
ing the conditions of speed, power, and number of revolutions for a given case. I indicate
the process of the tediw screw for choosing propellers in case the drag or head reeistwme of the
vehicle of locomotion in view is unknown, which is usually the case in practice. The influence
of the number of revolutions on the efficiency and aim of screws is examined in outline. Nota
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V, at the end of this article, gives the geometrical basis of the conventions used for scrt’w
drawings,

Chapter IV summarizes a new method of deter@ning the coefficients of fluid resistance “
based on the properties of the screw revealed by the,present theory. This method forms, so
to sp~ak, the basis of all the experimental data necessary for the calculus of scrma in exactly
the same conditiom of screw working. This is one of the most convenient methods, since it
only demands tests at a tied point of screws with planc+radialblades. I give a brief summary
of the general properties of this new type of plane-radial screws, of which tho method I stated
above establishes an important application. This short incursion into the domain of screws
working at a fixed point easily shows us how copiously the working of the screw in all the
deviationa of its applications, of which the working at a fixed point has wemed until now the
most difficult to grasp, has been tiectually included in the present theory. We find to the
contrary in the light of the actual theory that it is the most simple case.

This first memoir thus contains, besides a general summary of the whole screw problem,
a detailed study of the propulsive screw—that is, the propeller–-and the diilerent questions
in connection with it. A second mtmoir, directly continuing tMs one, will contain a special
study of screm at a fixed point in their dMerent applications, principally when used as fans
and as helicopters, as welI as a detailed study of the turbo-motor screws, especially as aerotur-
binea, that ia to say, as windmills.

Finally, I can not refrain from expressing the wish to see spucial laboratories set apart
for the special study, in the light of the present theory, of the domain of the blade screw, stii
so new, so widespread, and important from the point of view of universal social economy. I.t
is sufficient to bear in mind for one moment the important uses to which blade screws may be
applied, if only in shipping and aeronautics, without mentioning other applications, such m
fans, turbines, etc.-to imagine the enormous supplies of energy which the screw is t~e iMtru-
ment of utilizing-ta see the importance rmisingfrom its stu-dy. E~erF permntage gained in
the efficiency of screws is expressed by an equivalent total of multimillions of fuel economy.
All the power of marine and aerial fleets is directly based on the perfection of the screws
employed. The screw thus appeara se an important State Question, and that is why nothing
that can contribute to its perfection should be neglect.d 1%s rosulti obtained by the present
theory will be valued the more quickly and powerfully the more rapidly are created special
organizationa furnished yith all the neceasmy material for the pursuit of the possibilities here
developed. The program of activity of such laboratories is already drawn up. Tools and
inatrumentmfor all the indispensable tcste should be collected, and every effort concentrated
to obtain the whole of the experimental data necessmy for the calculation of screws. The
principal aim of such an establishment should be the standardizing of all screws necessary for
the development of the tachnical ark’ of the State. The screw problem is of such importance
that groups of competent specialist should be devoted to ita spscird study and charged to
watch over its highest and most perfect development. Will those to whom the importance of
the creation of such special laboratories-for the study of the bladti screw-is more than evident
excuse ma for these pleas in their favor which I have allowed myself to exprem here?

The main results contained in this memoir were in the hands of the author already at the
end of 1915. Their publication m Russian was b6gun in 1916, but only the first two chapters
and the fit half of the third chaptar were edited at the beginning of 1917, further publication
having been stopped by the outbrea~of the revolution in Petrograd,

GEORQEDE BOTEEZAT.
WashinS@D.C.
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NOTATION.

IINIFOEMLYEMPLOXEDIN THE PRESENTMEMOIB.

auew diameter.
effective pitch ofs blade eection.
dietameofab lademctionh meaewaxis.
breadthof a blade mction.
areaof a bIade element; AA= b&.
numberof bhdeu.
numberof revolutionsof the acxewper second.
angularvelocity of the ecrew;fl=%N.
trauslatoryepeed of the -W along ite *

@ torque due ~ fie ~WMU@ of ~ tie b~a, dfspcxwdat the samedistance from the ecmw *
@iaI tbrmt due h thesecameblade elemente.
reeultanttorque applied to tie ecrew axis.
reeultanttit.
aectinnathroughthe slip 6keam.
distanw to the screwti of a @nt taken in tie surfacesE, F, S“.

AS,A&, AW aunularelements of themrfaceef?,S’, P.
u,d, # dip velocitiesin theeectiom8, S’, W.

ru. r’d. F& racevehcitiea in the eectionsS. fl. SN.
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fluidmea flowing ina unitof time-throughM, A&,AS”.
masEdensityof thefluidin whichtheecrewisworking.
resultantveloci~ of thefluidrdativetoa blzdesection.
ffuidrtice ofa bladeelement.
effectiveangleofattack (meammxlfrom zero line).
constructiveangIe of attack (mezmred from chord).
effective blade augle (inclination of the zero line of oneblade eectionto tie plaue of rotationof the ecrew).
constructivebladeangIe(inclinationofthechordofonebladeeectiontotie pkmeofmtatfonofthescrew).
@e betweenchordandzerolineof a eaction. {=a+y ; p=#+-y.
liftcnefhient.
dragCoemcient.
coefficientof thermultautfluidresiatnce. AR=KiAA lF’=k@A IF; KMi; k@di
anglebetweenfhid reidetanceAR andzeroline.
angleeofARwiththenormaltothezEmline.
notationusedforeitherBEor19T.
valueof theangleof attackforwhichthefluidmeietanceARienormalto thezeroline.
breadthratio;a=@%-r.
“speciticfunction,”equalto thepartialefficiencyin thecswof a propelk.
relativepitch;2==~NH.
advwlce;p= VjW.
rdativeadvance;t= VND.
slip; a=l–z.
Id coefEcient;AQ==qUP.
totaletliciencyof theecrew.
~etiattitiab Mewtiatis=m- @atatidtik
partialticiency ata Iixedpoint.

AHthequautitiearelatingto theworkof tie screwata tixedpointaremarkedby a eubzero.
fanefficiency.
fzn loma%
Vortaxl!xsea.
rEaihulceIoa3al.
total loesa3;p-p#+pt+Pf
total thrust powerdevelopedby a propeIler.
totaltorquepow=abmrbedby a propeller.
@em of angleeof attackunderwhichthebladeaectionaareworking.

-.

-. .—

.

●



CEAFITM I.

THE FUNDAMENTAL EQUATIONS.

Let us consider an unlimited fluid mass, in which is immersed a blade screw rotating with
the uniform angular velocity f.1l/see, around its axis and having a uniform translation with
the velocity T7mt/sec. along that axis. Let us examine, in their general outlines, the flow
phenomena produced by the blade screw rotation in the surrounding ffuid medium, We shall
assume, to lix the ideas, that we have to do with a propukive screw or propeller.

The relativity principle of hydrodynamics allows us to consider either the screw moving
with the uniform velocity V in an immobile fluid mass or the tranalationks screw plunged

in a fluid stream directed with the velocity V in

_.-.++.+_._.

inverse sense on the screw parallel to its axis.
(kmsider~~ the latter case, viz, the screw im-
mersed in a fluid stream parallel to its axis,
the following is observed: The screw rotation
creates a fluid stream, generally called @

~\\ “ /’ /’ /“ stream,whose section in the neighborhood of
‘\\\l , /// the screw is very nearly equal to the area

\~\Q
///

&

swept by the blades of the screw. Tho velocity
\\ %J //\ \ V+Y of the flow inzide that slip stream diflera from

—- .
\ ~k

L$
i

the velocity V. A velocity increase is already/ -s—- - =
%-- observed in front of the screw, but it is in the

--- -
.,. wake, in the narrowest section of the slip

— —.

F=

stream, that the largest increase of velocity is
l:! n }+j~’ observed. Beyond its traualationaI motion,

1~1 the fluid in the slip stream has also a rota-

1~~
/1/
Ill

tional motion, so that the motion of the fluid

p-+-l-h
particles in the alip stream is a helicoidal one.

qA~
.

-4/1,s .
Let us divide the slip stream created by---

\ the rotation of the screw into three domains..— -

~?i ~ T
J, \,\\

v“ , The lirst domain is constituted by th~ part of
Ii

I
the slip stream disposed in front of the screw.
This domain is included between the section SO

mm1.
of the slip stream taken at such a distanc8 from
the screw that the flow velocity in it is still

equal to V, and the section 8 directJy in front of the screw, but, however, at such a distance
from the latter that the flow in it is not disturbed by the local phenomena created by the ro-
tation of the blades of the screw. The exact position of this last section S wll appear in the
following: The second domain contains the screw and is included between the sections S and
S’ of the slip stream defined by the condition that the sum of the differences of the pressure
in these sections S and S’ is equal to the resultant thrust of the screw, Them sections will
be submitted in the folIowing to a supplementary condition which will specify them exactly
!I’he third domain is formed by the slip stream running off the screw and is included between
the section IS’ and the narrowest section S of the slip stream. The sections S, S, and S’
will be, in the general case, surfaces having the axis of the screw as axis of symmetry. In
figure 1 these sections are reprwented in a purely conventional manner.
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Let us decompose the velocities of the fluid particles in the motion S into two components;
one axial (see fig. 1) which we will designate by V+v, the velocity wrepresenting the incresse of
the flow velocity already existing in the aectiim S; the other tangential component, which
we will designate by m where r is the distance to the screw axis of a fluid particle crossing the
section S. As for the radial components of the velocities of the particle9 in the section S1 as
well as in the sections S’ and S’ of the slip stream, we will consider them ss negligible, these
velocit.k having very small vahwa for the states of work of the sinew which are of practical
importance. The states of work of the screw for whiih the radial velocities have sensible
valum will appear, besides, from the later developments of this memoir.t

We* cti 81ipveihity the velocity u, and met?Vehm-iythe vdocity ru. The slip and race
velocities have generally differaut values in different points of the section S. These velocities
are, be.sidm, periodical functions of the time, whose period depends from the period of the screw
rotation multiplied by the number of bladm. But we wiU agree to consider v and rw as the
mean vahms of the real periodical velocities, and under such conditions the vcilocities v and ru
can be considered as constant in time and in space for sll the points of the section S at equal
distances from the axis of the blade screw-evidently only for a determinate state of work of
the screw:

For the distribution of the pressures, just es for the distribution of the velocities, we will
only consider the mean values insttmd of the real periodical dues. For all points situated in
one plane normal to the screw b and at equal distances from it, the pressures will thus be
considered as equal.

Let us decompose in a similar way the velocities of the fluid particles in the sections S’
tmd W into axial components

~’+V’ and V+Um
and tangential components

r’u’ and rHufl

The velocities # and v“ will be named slip velocities in the sections S and S“, end r’u’ and
r%’ race velocities in thwe same sections. To these last slip and race velocities have to be
applied all the remsrks we have made in relation to the velocities v and m.

As for the velocities of the particle-sof the slipstream behind the section S“, we will admit,
in agreement with experiment, that they are progressively didpated by viscosity.

M us divide the whole sIip stream into a series of regions of Mnitely and thickness,
limited by surfaces of revolution, the locus of the stream lima of the mean velocities of the
shp stream, and having the screw =is as axis of symmetry. These annular regions will cut
off on the surfacea S, S’, and S’ an~ular areas which we wiU designate respectively by

As, As’, As

and which are lhded by circumferences having rad]i

——u

——
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Let us designate by Aiif the fluid mass which flows ima unit of time through one of thase
amular regions. On account of the continuity of the flow we must have

where 8 is the fluid mass density which we consider as constant in the whole fluid m=. The
constancy of the density is evident when we have to do with an incompressible fluid, such as
water, for example, But the density can also be considered as constant for a compressible
fluid, such as air, for example, so long as the flow velocities do not exceed vahes of the order
of about a hundred meters a second, because under such conditions the observed pressure
difhmmcea will be low, and, accordingly, the density variation negligible.

Throughout this memorandum we will use the metric units:

Hg.--wefight;meter; 8ecod

In this system of units, for normal conditions of pra4auretmd temperature (760 mm. and
15° centimade) the density has the V~UeS

for wat8r td03!@@ d,
.,-. -

Let us designate by AI and AI’ the momenta of inertia relative h the screw axis, of the
fluid mass AH considered in the anmdar sections AS’ md AS’ respectively. We have: .

;2) A~=A~.f; AI” L=Aiif.raa

Taking into accbunt the relations (1) and assuming the similitude of the flow conditions (1) in
the sections S and S’ we get

(3)
Ml V+VU @ AI—’
~ “~””~ AIn

from which follows

(4)

(1)
T.L

%&%%-+ ‘

m bs-ing the numbr oftit and&’J reawetfvely retained in r and P. Thfe Iu-FKIthde fe justffkid by the folfowiru%COUddOM~OUE:E~lY

speakfng, we here %-+’%%”
or going met horn flnlte dfferanoia b differentfele we get

l-+tiF&-”--w
and Integrating

rq~wa)

when

(2) ~eonet

we heve

or r/f -&/d# d consequently



THE GENEIM.L THEORY Or BLADE SOREW& 171

AU the foregoing is only the charaotaristic of the flow in the slip stream from a purely
kinematical standpoint. We will now proceed to the fundamental equations which connect
t-hework of the blad~crew with the motion of the surrouud@ fluid. We shall begin by aI1

examination of the pressure distribution in the slip stream and of the conditions vvhioh exist
on its boundary.

k each oross section of the slip stream the pressure is not cmm%mt,being generally lower
in the middle of the oroas section, than on the periphery; this is on account of the rotation of
the fluid in the sIip stream. fi Note ~ at the end of this memorandum, it is indicated in
general outlines how this presure distribution oan be calculated, and ite general course is
represented in Fig. 2. In nedy all the practically importmt applications of Made-sorewa the
pressure differences in the sIip stream cross sections me small, on account of the fact that the
hid rotation is slow, and, besides, the pressure di.tlerencesproduced by the fluid rotation are
partially compensated by the curvature of the flow surfacea in the meridional planes of the slip
stream.

It is thus easy to see that in the section S the pressure is necessarily inferior to the outs.ide
pressurep.. This follows from the fact that the veloeity of the flow in the slip stream is increas-
ing as we approach the section S. We shaII see m the foIlowing that when one passes from
section S to eeotion S’ the pres9urerises! and in the section S is greater than pO. But from S’
to IS the sIip stream velocity is stilI increasing on account of the narrowing of the sIip stream,
and therefore the preesure decreases, and in the section S ita departure fkom the pressure PO

is genedy very small. In the definition, given in the following, of the normal conditions of
work of a screw, we shall assume the pressure in the section SR to have recovered its origgnfd
due, that is, retaken tlm vahe po. This means that the action of the considered blade screw
i~ not to produce a difference of pressure, but eomists in eommunicat.ing a certain momentum
to the fluid. Under such conditions, beyond the sdtion S“ the slip stream diffusion must go
on at a qua9i-constant pressure. The case of work of the screw with “pressure step” wiLIform
the subject of a separate investigation.’

The existence of a pressure and a flow velocity dif7eraucebetween the inside and the outside
of the slip stream in the seotions S’ and S“ leads us necessarily to admit, as follows from the
considerations shown in Note II at the end of this memoir$ that the boundary of the slip stre’am
must be a vortex sheath maintaining these pressureand velocity ditlerences. The vortex intensity
and the curvature at each point of the slip stream vortex sheaths can be estimated when the
pressure and velocity differences on both its sides are known. The existence of the sIip stream
vortex sheaths follows also from the fact that from each bhide tip there must run off vortex 61a-
mente,whioh dispose themselves on the slipstream boundary. This directly follows from Wfiam

wbfchoonfhms therelation(l). Letnsnowshow thntinthegmat majwityofp.ractfcaJIy fmporbtcases W eondRfaI (2)tssatkl&
L For V-o, ~dm~~~~M ti-~W@_W#4, mhre

P+& * ## ,--
mss

~~-~dsbtiw= kdtimew~~fitiw~t.
TI. Fm Vhaving sIargevaIne. relMvetos

‘+ f- ‘+’” ‘“ l-ooJntw 7Fi=_’FF-
‘r’tlkicaseCorreapondeto~ andtotortdms.

Ill.For Vofthsaraeorderaes

v-t-d 9+18 s?~Q-~-slf- Crest
IV. FM 11-const in the wM6 S6CtkOIof th6 dip etmSOL
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Thomson’s (Lord Kelvin) theorem on the invariability of the circulation along a contour
accompanying the fluid in its motion. When foUowing such a contour embracing a blade of the
screw and moving with the flow relative to the blade, the circulation along this contour must
maintain its valueao far as the fluid can be considered as perfect-which is ilxed by Kutta’s.
theorem.’ Vortex tubes must thus run off the tips of the blades and dispose themselvca on the
slip stream boundaries. The fluid in the dip stream having also a rotational motion, there
must akc be formed a central vortex tube aiong the screw axis.’

We have thus reached a general picture of the flow in the slip stream created by the blade-
screw rotation. Let us now consider the slip stream as represented in figure 2 and apply to

-,-. 1
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Fm. 2,

it the momentum theorem
as well as the theorem of
momente of momentum. In
the case of stsady motion
of a fluid these tlmoremscan
be expressed by the foUow-
ing unique propositions

ll?ien a $uid mass i8 in
a etizteof 8teudy nwti.on t7te
rewUan4of the wrerwhof the
8@em OfAH. THE EXTERIOR

FOEcEs applied to a portion
<f the $uid mum limited by
a closed eurface, and of the
imrti of the inj?aw $uid
momentum (tlie oui$w$uid
nwmerdum huviq to be tuk
in rever8ed sense) h egwl
to ZeTo.
Let us introduce the fol-

lowing notations: We will
call partial tit and ddg-
nate by AQ the axial
component of the resultant
fluid pressure on all the
blade elements contained in

an annular volume (h’, AS’). The moment AC of this resultant pressure referred to the
screw axis will be named partial iorgua The raultmt thrust of the blade screw and the rcmdtsnt
torque applied to its axis wilI be respectively designated by Q and C. The muses of the blwie-
screw translation and rotation, when the latt.aris propulsive, will be adopted as positive senses
along the screw axis and around it. Let US,bcsidm, designata by p, p’, itnd p“” the pressunx
mspective.ly in the sections S, S’ and W, the exterior pressure being dcdgnatcd by po, as has
already been mentioned. & for the stresses on the boundaries of the slip stream, we shall
decompose them into components normal to the boundary surface, whose value isp.’,ad iIlto
components tangential to the boundary surface, the last being producad by the slip stream
friction against the surrounding fluid medium. It is easy to see that in the sections So and S’o

—.,...,.. ...1.
lika Nets IVatthe mdofthf6mem0k.

.<, . . . . - :;.%-c.~

a See the stereotypical photogrspbs oi O#uid Fioimn. The dr bubbiea wur on Oreaa photcgmpkm diepca themeelwe eicmg the =16 of the
Vlx’taxMM.

~@a NotAI nt the end of this memoir.
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(see fig. 2) the stresse9 will admit only normal components equal to p., so that the tangential
stress components will have a sensible value only at the lateral boundaries of the slip stream.
We wiUdesignate by F“ and F the projections, on the screw axis, of the resuItant of the tangential
components deveIoped on the lateral surface of thd slip stream for ite portions raspeotively
incduded between SO, iS” ad S, SO. The redtant momante, relative to the screw axis, of
these tangential components will be respectively designated by C’, for the portion of the dip
stream surface betwean ISOand S, and by UPfor the portion of the slip stream surface between
W and S’..

L& us first apply the theorems of momentum and momenta of momentum to the alip
stream portion between the extreme sections SOand S’.. The only exterior forces acting on
this vohune are. On one hand the iihrust –Q and the torque - U (redtant action of the blade
screw on the fluid); on the other hand the friction forces developed on the boundaries of the
volume considered, whose remdtante are F+ F’ along the screw axis and Cir+ C’r around the
screw axis, this under condition that the extarior pressure exerted on dl the voh,une con-
sidered has a resultant M@ w zero. As there is no fluid momentum variation for the volume
considered, we must have

F +P -Q-o
Cr+C’r-O=O

or
(6Et) Q=F+F
(6b) o=i.7r-#’P,

We will consider as negligible the friction forces developed in the slip stream between the
sections So and Ss, that is, admit

F’d; C’,&*

because it is between the sections S“ and S’., where the slip stream d.iilusion takea pla~, that
is developed nearly the whole tota[ity of the friction forces. Under such conditions we will have

(6a) QsF’
(6b) tiG

.

which means that the friction forces developed between these sections S and WOequilibrate
the thrust and the torque of the bkde screw.

Let us now apply the same theorems to the dip stream portion included between- the
sections S@ and SO1. The exterior forces applied to this volume are the msukmta Fand a of
the friction forces and the resultant of the prassuresnormal to the surface of this volume. !l%is
last resultant is seen to be equal to –2ASU (p’ -p.) when it is remarked that the uniform
extior pressure po considered ss applied to the whole volume (S”, S’0) must equilibrate itself.
The inflow fluid momentum, for this volume, has for ita resultant along the screw axis

-2A~(V+u”)+ZA~VE-~~v’

and for the resultant torque around the screw axis

We thus must have

But as we consider
exterior pressure pO

7a)

(7b)

~ -ZA~’cJ”=0

that in the section R’ the pressure
we must simply have

~==XAii@

(7F=XA18WH.

has alreedy reached the value of the

—

—
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Let us apply the above-mentioned theorems to the portion of the slip stream between
the sections S’Oand W. The exterior forcss applied to this volume are: The friction forces
whose resultants are F’ and C’F; the extarior normal pressureswith the remdtant ZM” (pU– f%);
the thrust – Q and the torque - C. The inflow momentum has for rasultant

2AH(V+#]-21AMV= 2Ail.f@

Ztieti u
We thus must have

-Q +F’ +mSm (P8 -P(J +ZAMV’==0

- C+ (7’F+ZAI*a” -O

But as we admit F’, O’F,and MS’ (p’ -p.) to be negligible, we have

It must be remarked that effectively it is for the section W that the fluid momentum variation
reaches its greatest value. These last relations (8a) and (8b) also follow from the comparison
of the relations (6) and (7).

Let us also apply our two theorems to the tmnular volume (ASO,AS’). A the friction
forces have been considered as negligible for the volume (S., W), they have also to be considered
as negligible for the volume (LWa,A$H). ‘lb resultant of the normal pressures being also con-
sidered as negligible, we have

(9a) AQ=QA~V”

(9b) .AC?=AIRWU

and, comparing with the relations (8) we see directly that

(lea) Q=2AQ

(lob) C=XAC

This last consequence is of tirst importance. It justifies the partition of the slip stream into
annular regions and shows that the resultant thrust Q and the resultant torque U of the blade
screw can be considered as equal to the sums of. the partial thrust AQ and partial torques AC
under the hypothwis made.1 The relations (10) ako establish the possibility of integrating
the partial thrust and torque alon~the blade, In other words the rdations (10) show that
themwh.d integ%rencsof the sections of the ~ame Ma& can be tuhnittad as negligible. What is,
in reality, the mechanism of the transmission of this blade section interference? It is specially
expressed by the pressure differences in the section.NU. Thus the working conditions of blade
elements included iu an mrmlar vohune such as (AS’0,A.N’) me submitted ta the influence of
the pressure difb.rence AS” (p’ -p,) which is, exactly speaking, variable along the blade. But
this last pressure difference being negligible in comparison with the other forces acting on the
bhuie elements considered, the mutual interference of the bhuie sections turns out to be also
negligible.

Let us finally apply the momentum theorem to the fluid mass contained in the annular
volume (~, AS’). The exterior forces applied to this volume are the pressure of the bhuies
on the fluid, whose resultant along the screw axis is equal to – AQ, and the resuhnt of the
exterior pressure acting on this volume, equal to

pfo? -pAS,

~It tibewyti xWth-eduti mtihvo K-dif@tiu thMctihmmrti SHW’8dlftmmD
hadbemU@oted.

zw~* )
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when one neglects the friction forces acting on the boundaries of this vohrne. On the other
hand, as in the most important practical applications of blade screws the sections S and S
come out to be close to the blade screw, and as we neglect the radial velocities we have

ASaiAS’ and wad

and on account of the flow continuity we will thus have

The fluid momentum variation for the anmdar volume (AS@”) is thus equal to zero. The
axial resultant of all the exterior forces applied to this volume is therefore equal to zero, so
that we wi~ have

p’AS’-pAS-AQ== (p’-p)AiAQUOUO
or
(11) AQp’.p.m

This last rdation wdl be considered as being the definition of the surface S when the surface
S will be known.

We can now see that the pressure distribution along a streaxnJ.inecrossing the space swept
by the screw blades wiMhave the gened course represented on the right-hand side of figure Z.

Finally the following fact mu..t be noted. If the theorem of moments of momentum
were applied to the slip stream portion included between the sections J90and S, it would appear
that the fluid contained in this portion has no rotation. The rotation of this portion of tie
slip stream can thus be due only to viscosity and to the periodicity of the pressure distribu-
tion in the section S. It is also for thase last reasons that there oan be a variation of the
moment of momentum of the fluid between the sections S’ and SR.

we wi~ say BY DEl?~ITION itit (Z b~e 81%9!0~ UWT~?@ U?l~W NORMAL COLXOITIONSwti

tie rel.atim (8) and (9) can be corwidmedas suficimt approxhndom of the thrmt and the torque.
This definition is justitied by the fact that in the most important practical applications

of the bIade screw the normal CLWWWWare realized.
We will call n-eigh30rhmxicunditti aU the circumstances which can remove us from the

normal conditions.
In some bIade+crew applications, the neighborhood conditions have a primordial influence.

These special cases of blad~crew applications w-illbe submitted to a separate investigation.
Substituting in the rdations (9a) and (9b) the above values of AM and Al’ we get:

(12) AQ=AS(V+V)V’6.

(13]

These expressions will give us the values of the partial thrust AQ and the partial torque At?
produced by the considered blade elemenk only when the slip and rwe velocities u, v’, and W“

dl be determined.
Let us agree to call specijcfunction the quantity

(14)

L.—.

—.

— .-.

—

which represents the ratio of the work VAQ of the partial thrust ta the work WC of the
partial torque. It ia easy to eee that this ratio is nothing other than the partial e~ciency of
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a bIade element of the blade screw considered when the last is propulsive. But I hEVe con-
sidered it necessary to adopt for this ratio a more generaI name, because we will have to consider
it far out of the limits, where it has the meaning of the efiioiency of a propukdve screw. We
shall see in the following that this ratio specifies by its numerical value the type of machine
which the blade screw realizes.

Let us now pass to the direct evaluation of the fluid pressure on the elements of the bladee
of the screw. \

I /

I
ma. 8.

Figure 3 gives a general picturo of one of the Made elemente considered. The relatme
velocity W’of the fluid ti regad to the blade element is the resultant of the velocities V+u
and r (Q– a), The line 00’ is the .ceroline,~ to which. is referred the angle of attack i; Q is

tie angle between th zero line and the plane of rotation of the blade screw; it is by this angle,
called e$wtive Made angle, that we llx the inclination of the blade elementi on the screw ro-
tation plane.

The rs.Iationbetween the effective blade mgle P and the pitch H of a blade eoction is to
be directly seen from figure 4. We have
(15) R=2m’ tg @

It is esay to see that the numerical value of the pitah depends upon the reference line adoptad
to fix the inclination of the blade element considered.

The pitch H countid from the zero line will be called gflwtive pitch, h opposition to the
conductive pitch measured from any other

BY

reference line-the chord of the blade section =
profile, for example-whose consideration cm -1\\
be more cortvenient in some casm, as for - ‘ ‘~
the workshop drawings of blade screws. H

k far aaI know it, innewlysllthe blade- .
screw iuveatigatiom it was the constructive -- .
pitch, measured from the blade section ohord, 2*G

that waa always comklered; but, se follows
no. 4.

in full evidence from what is said in Note III at the end of this memoir, the constructive pitch
is no other than a quantity arbitrarily chosen. Therefore we can not adopt this quantity to
describe the blade-sorew properties. The blade properties depending upon pitch can only be
referred to the effeotive pitih, whioh is a perfectIy defied hydro@namicsJ charactmistio, fully

IForthadednMonofthemroh mdinetim~~~m of~dmhtiw,mNota~*t UMmdoftJd6memmuklm.
...-. -——
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independent of the mrew blade section profile. To equal constructive pitohes am omrespond
very easily unequal effective pitches, and vioe versa. under suoh conditions it is essy to con-
ceive all the difllculties which the consideration of the castruotive pitch can bring into the
analysis of b screw-blade problem. Thus, when using the constructiwa pikh, we oan oftan
fmd negative values for the slip, while the effective pitch will always give positive values of the
1ss$ as must be from the physical mesni.ug of the slip. We $herefore see how important is
the consideration of the efleotive pitoh.1

AU the quantities which are necessary in order to speoify the vslue of the fluid resiatanoe
AR of a blade element are represented on figure 5. Itisbythe anglep= thatwetifixthe
ind.ination of the reaistsma AR to the normal h the zero line. As is well lmown, we have

(16) AR= k@AW’ .. ..

where 2{ is an empmcsl function of the wle of attack depending upon the blade seotion profie
considered; 6the fluid mass density; M the area of 8 blade element, equal in a sullioient approx-
imationto
(17) M=?iAr

b being the breadth of the blade element wmsMerecL
The velooity W is equal to

(18) w= (V+v)$ +rW1-@)’.
and we also have
(19) Wsin (q–i)- V+v; Wcos (p-i) ==r(Q-u)

(20) tg(p-i) -V*)

For small w@es of attack the formula (16) reduces to

(21) AR=kaAAW%

In Nets III will be found all the restrictions in the use of the formula (16) and (21).

1For ~pl~ the ellecth% PM& &@?#at w the rf@LtMM~ of tha working Caudit!om of a bmronmng. A segxarbmm~
whomtwomymmetrfcdbtsdesmenottwis~lmt haveaerofdl Wcttoq wDI ham an MectIre pitch oft. emta!nvahxe f= rc&ettom In Mb seme#
in thepkne ofitabk!dw,andthm whentbrownwithan fdtfahotation wfILpmdnm a thrmt ti which all tnter@lng boommang~operties ue dun.
A~h,@~_,ti@m_s_aIeR*hmomm_

1670so-s. DC@.S07,~ls

-.. —

.
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-—.—



178 ANNUAL REPOItTNATIONALADVISORY OOMMITTEE FOR AERONAUTMX

If the screw considered has n blades, we wiUhave included in the annular space considered
n blade elements, giving each a resistance AR. Projecting these forces AR on the screw sxia and
on its rotation plane, we will fid the values of the partial thrust AQ and partial torque AC
produced by the elements considered:

(22) AQ=n~ COS(~+s,)

(23) AC=nr~ sin (q +-I%)

These last formuha assume that the values adopted for the empirical functions k{ and I%
take account of the possible mutuat interference of bladea of the screw. ID the followipg we
will return, more imdetail, to this lsst question.

Comparing the reIations (22) and (23) we fid

and for the specifk function we get the value

(26)
VAQ V-l

p=~-~’-, ‘ , ..-.

It must be noted that the last expression of the speciiic function is fully independent of any
hypothesis.

The expressiona (12) and (13) of the partial thrust AQ and the partial torque AC, found
in the foregoing by the general consideration of the fluid motion around the blade screw, must
etidently be equal to the expressions (22) and (23) of these same quantities found by the direct
evaluation of the fluid pressure on the blades of the screw. We thus have:

(27)

In these last relations appeme the expression

&
G’

which is the ratio of the total breadth of the blade sections considered to the circumference by
them described. We wiU designata this ratio by a and give it the name breadth ratio. Thus
we will state

(28)
d

‘=s

—

,-

. .
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Introducing the notation (28) m the formuke (26) and (27), and taking account of the
relation (19), we ilnally get

-a7ci cos (P +PE)(29)
V% sln~(p-i)

(30)

These last two rehdions conetitub the tit two equations of the general blade-sorew theory.
Let us now calculate the work of the fluid resistance of the blade elements considered in

their motion relative to the flow meeting them. We have

AR T-7cos (AR, w) =nAR sin (q+/3E)”9’(Q-co) –nAl? 00s (40+&I).(v+u)

and on acoount of the relations (22) md (23) we get

(31) AR cos (AR, W) =AG(Q-u)–AQ (V+u) ==Q&7– VAQ-UAC–VAQ.

In the last member of this reIation, iMC is the work of the partial tmque; VAQ the work
of the partial thrust; wAG the work communicated to the fluid in its rotational motion; vAQ
the work communicated to the fluid in ita tramdatory motion. Accordingly, the quantity
ti cos (N3,W) represents the work spent in the disphtcement in the fluid of the blade dementa
considered. It is evident that the same relation hokls for any other blade elements. We are
thus brought to the following fundamental theorem.

Tmommr 1.—5%8 work of tfieJuid rahtance of the &!ad&in thir motion rektive to theJuw
meeting them b equal to th tom%8pentfw the displacenunt of th U-ada in tti jluidl thui is, equal
to th work spent in 8Zwck8,fdion, etc., of thejluid * against thu Wi.e3.

This lastfact established, we are now able to apply the kinetic energy theora to the
annular epace containing the blade elements considered. We thus have

(32) QAO= VAQ+ ~A~vua+ )@I’a’* +[QAU– VAQ –aA~-vAQ]

from which follows dir9Ctiy
(33a) vAQ+-u AU=~Adfvff z+ ~AIUa ‘=.

This Isst relation is in reality evident of itaalf, because it expresses the fact that the work
communicated by the screw to the fluid is equsl ta the kinetic energy of the fluid in the section
S”. But it was my intention to show, so to speak, the whole genesis of the lest relation, on
account of the distribution of energy absorbed by the screw working. It must @ be noted
that the relation (33a) is a direct consequence of our definition of the normal working condi-
tions of a blade screw, according to which the 10WSSbetween the sections L%,S ~d S’, S’ -
considered as negligible. The relation (33a) can slso be writtan in the folIowing form: sub-
stituting in (33a) for the partial thrust AQ and the partial torque AO their values given by the
relations (9), we get
(33b) ~~(2V—v~)=r’ ~u’ (~~—~).

We shall now show that on account of the normal screw working conditions not only the
relations (33a) occur, but also that we have, separately, besides

.—

—.

.

_—.

.—

(34a) vAQ- ~Ail.tWs
and
(34b} aAO= ~AI’aM ‘.
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In eilect, let us apply the Bernoulli theorem between the sections IS”Oand ~. Neglecting
the intmior losses between these sections and neglecting also the radial velocities in section
S, we have (’)

a(v+u)’po+=;.p+-~ . . .. .

or

(35a) PO-P== :(2VV+V7.

Let us apply once more, to the same approximation, the Bernoulli theorem between the s8c-
tions S and 8’; we have

+ :W+vp=p’ +](v+lv)’.

But aswe admit the pressurep“ to have already reached the value pOin the section i3”, we will
have

(35b) P’-Po-; (2vu”+v’~-2vv-v).

Adding term by term the-reIations (35a) and (35b), we get

On the other hand, on account of

P’-P-;W+O’

the relations (11) and (12), we have

‘Q a(v+u)v”.P’-l-~~-

From the direct comparison of these last two relations we get

;(2V+V”)V ‘=d(V+v)v”

or

whioh, on account of

vu =2V

the relation (33b), hss as a direct consequence

UU=2U.

But according to the relation (9a) we have AQ-A.Mv”.
—s . ) z.

1WhentiemlldveIdtbrue@@i; t k “ii fltiih & tip8tr~”:k”&lLiili&iOoiklimti;k“*&d iit”wa”dia ““

. . . . .
* ...~;.m

mettons &, S and 8’, P by ttm fdkvlog system of equatfoIM

a(v+o) ?qlL.s: arms- *: *(v-I-v) ~-o

oandrrnbelngheretheellpen dremvehmltkatauypelnt of thesllpstrm mats~-erfrmww~,ptiexmatti~t oen-
aldercxl, z the oylfndricsI mordfnete PerWIel to the wrew axis, the last being m exf.sof symmetry for the whole phenomenon.

The third of them e.qm+timumeans thet the redial eompcmenti of tho vort!wa in the alfp stmem can be mmMered 88 negl&lbIe. TIM
smond of these qnetiena jnsthlee the ealenlation of the preaenre dtstrfhutlon tn a OIMIadicm of the dip strewn indfcsted in Note 11 The
tit of them equetlona, integrated elong s stream fine, gfves

a(~+pwt

Wa time see that when the did velmltim m neglected the rem mloelty UMOUout to be negligible !n tlM celmdatlon cd the PIOSMIWdls.
tribntfon alonc a 8treamlixte of the dtp stream.
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The reIation (34a) is thus justied. On account of the relation (33a) the relation (34b) follows
directly.

The two re1ation9
(36) Vff=av; uR=2@

constitute the other two equations of our blade-screw theory.1
Thew lmt relatiam 8bW ue thut the 81@ ati race velocitia in th 8e&n 8’, hi is, in tbe “

outdraugfit, are exady th? dodh of the corre-qnmding81ip and race Ve?.odti in% aectianS, that
h, in thei?uirau$m. l’%?eza.ctpodh of the 8e& ~ to w?kkh has h be mj%rredthe vebcity W,
u#edfor the cakukthn of the$u% rwi-stanceof th 8~8, ~ tkjixed emci%y.;

As far as I lmow, the relations (36) are in full agreement with all the experiments made up
to the present day on the velocity distribution in the slip stream.

Thus N. Joukowski, in his analytical interpretation of I?Iamm experiment, comes to the
same resuks.~

G. EiRel has observed the slip vdooities in the indraught aud outdraught of a propeller for
values of V included in the interval of 10 m./sec. to 25 m.fsec.; and his experiments verify with
an accuracy of 1 or 2 per cent the relations (36).4

The relations (36) thus appear sea fimdamental charactmistic of the flow in the slip stream.
Substituting in the equations (29) and (30) the values found for v’ and U’ we get:

(37)
- aki COS.(p +/i?E)

+V am’(q) —%)

(38)

(39)

The expression of the specific function takes the form

The equations (37), (38), and (39) with the relations

(36) VU=2’V; tin=%

constitute the system of fundamental equations of the general bkde-screw theory, which em-
bracas all the blade-screw properties?

AII the folIowing chapters of this memoir will be devoted to deducing the blade-screw prop-
erties by the analysis of this system of equations. It is in the consequences obtained that there
will be found the best confimaation of the system of equations established.

Before psssing to this aualyeis, I will establish the explicit expressions of the principaJ
quantities which are used to characterize the work of the bhde+crew elementa wmsidemd.

1‘Fhetilfshmentaftiomlwmsml fortheaddh psrt of thes14etremn whs=e ther’s emsmslL needs @y thmothds that thehses

behrealthesectians ss,8, snds’, raren@gibIa.

a EEectf~ ~e~hm Mtie=ti&u~~ hem, witktia~w% *Mdtie@st-: thesaztioniY fetbeonod&pc8ed
tiWhtiWht XthesHpmd- ~- Ue_*MW&tksMpmd reeenlmitiesiutheesohon~. The pOsMondtisec-
tfon & fs tied hy the rdstion (II).

*N. Jonkomkl, “Vortex Thenry of the PmpuMm Screw,n Metimss (20) and @l) cm~ 11aud ML Wxcow, IP12(m Enssien).
~& EiUsL” NoaveUes rsdwmlm mmIa redstsnce de l%ir e$ I’ametmn hftas auIebmstolred’Anteu&;t Paris, WM. See the table an p. K%
*A-titid-~mdqmb~befomdhNob VIatthe endofthbmemoir.

—

.—

--
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We will designate by N the number of turns of the blade screw per second, and call relative
pitch the quantity

(40) . . . ,. _-—

which expresses the ratio of the pitch of the trajectory of the blade elemant considered to its
own pitch.

Let us besides dasignata by-p and call advance per turn, or, shorter, the advance, the ratio
V/N.
We have

(41) ‘==~-Hz
~=x Q

As H=2m tg p we also have

(42)

(43)

The specific function takes the form

and we have

(44) p%(p+fh)=~%~-~

Let us introduce the notation

(46)

(46)

(47)

The equations (37) and (38) reduce then to

v-%-

.—

From these last equations we find directly the values of the slip and race velocities v and W:

(48) Paz azg.. — —Hz-r% #W

(49)

Introducing these last values in the expression (2o) of tg (W-i) we find:

1
@ (9–0 “i~J- ... .

-y;:z) tg (q+l%)

from which relation we get the value of the relative pitch

(50) (1-az) tg {p–i)
‘=tgq [l+az(l+az)tg (w+6E)tg (P-I)] ““ ‘“”” ‘“”

.— ...-. .

.——

.,...——
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Introducing this lsst value of the relative pitch in the expression (43) of the spetic function, we
find :

.-— -

(51)
(l–az)tg (p-i)

—

p‘%~’
—-’ -..

We thu8 geethat tlie relizthe pitch x and the 8peci$-cfunction p of a Nude elementarefunctions
of the an.qleof attudc i only. We can therefore consider the specific function as being a function
of the relative pitch only. We are thus brought ta the folIowing theorem:

.—

Tmzorum IL—2%.8 apeci$cfunction p of a W&9 element h a f~ of th TeZQtivepitch of
the 8ame Made ehn-ent only.

Substituting in the expression (12) of the partial thruet, the value (48) of u we get: :.—

(52)

and introducing the notation

(53)
2az

w-~
we get
(54) AQ=q8ALSVa

which expression of the partial thrust is similar to the expression of the fluid resistance .-
....—

AR=k@AW

‘We will call Zoadcoeficieni the coe.tlicientg d~ed by the relation (53).
Introducing the value found for the partial thrust A Q in the expression (22], we ~~f~r” ‘-’ - — ‘~

—

AR the value

(55) AR=
ncoiZ+ihS-n*

bd for the partial torque A C we iind the vahe:

(56) A~-AQr@(P+8E) =rg8As Vs@(P+~E)

The work developed in a unit of time and the power absorbed by the bIade elements consid-
ered are equal to -
(57) FAQ=q8Afl V’

(58)

Between the slip s and the rehtive pitih z exists the relation

H– ~

(59) 8=-=1 –~E1-X

from which follows
(60) Z-1—8

Let us finally agree always to consider the indraught and
slip stream which the blad~crew rotation tends to pro?uce,

the outdmught relative’ to the

.—

--



(k.&ECER 11.

THE STUDY OF THE SPECIFIC FUNCTION.

We will make the present discussion in the following way: On one hand we will direot
our attention to the blade element-e; on the otier, we will folIow the general picture of the
phenomenon by aid of our system of fundamental equations. For the general view of the
difterent states of work of the blade~crew, which we have in mind here, it will be more convenient
h fix the orientation of the fluid resistance AR relative to the blade element by aid of the angle

-— .—. —- -

\ “\

‘/’\
I\. /’

‘-%-y?.\\p<“\
.\
\

——— . . .——

,- .-f.2__./.>J [./_p” i””-”___
— -—.

..-

1
Rxa.6.

P’ between AR and the zero line. The swe adopted as positive for the angleg 13’and i are
indicated on tlgure 6. Substituting for f?= in the formuke (45], (50), (43), (48), (49), (52)
and (66) its value .

flE=;-b’

we get

(61) ~=aki sin@’ -P) v
2 EiIP(i-q?) ‘7%

.-

(62) l–az
‘-tg ~a~(l +ae)ctg@’ –q) –ctg(i-p)]-&

.. —-

(63)
‘-%*-%$ ‘ “--

(64)

(65)

(66) AQ=9hL%(V+V)~ =~,8.&ST ==q&bSV’

(67) AO=AQ rctg(fl’-~) =r@AiilP dg@’–P)

h these formula figure the two empirical functions k{ and p’, the general course of which
. is nearly the same for all the aerofoil profihw. For variations of the angle of attaok i starting

184
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from zero, the empirical function P’ increases very rapidly, and even for small values of the
angle i reach values near to 90°, which value this function maintains till the angle of attack
approaches 180°

.—
; for values of the angle of attack near 180° the tingle p’ rapidly reaches also

-.

the value of 180°. The empirical function ~ also incre~es rapidly with the angle of attack,
——

up ti a certain vahe of the latter,after which the increase of k{ bwwm~ moderate; after the --
angle of attack h= r~h~ tie v~ue of 900, tie empirical function k{
de&eases, first moderately, rtftmwmbap~!y, audappro- b -
value zero when i approaches 180°. (See Note ~ at the end of

.—

this memoir.)
- .-

In the present discussion it is the general course of the whole

—

phenomenon of the working of a blade screw that I wish to estab- .
--—---——-.

lish. The quantitative side of the question will be taken up in full
detail in the folIowing chapters. This is why in this chapter, for

—.-

the simplicity of the analysis and the symmetqy of the results, we
—

wilI assume that the blade elementi considered are simply consti-
tuted of flat plates with the blade angle p equal to 45°.

I will begin by two general remarks. .: .~
..—.

Remark 1.—The expressions (9a) and (9b) of page 174 will
give us in magnitude and sense the values of the partial thrust

““”F

AQ and the partial LcrqueAC when AJf arid AIW are always taken as
positive. But the ralations (1) will give for AM positive values

—

only when (V+u) >0 or (V+ v’)> 0, in dependence upon the ex-
pression adopted. We must therefore, in tie expr-ns of AM and
AI’, change the signs before (F-I-u) and (V+v’) when three last
expressions will become negative. This corr~ponds to a changa in
the sign before az in the equation (46), when (V+v) becomes neg~
tive, and in the equation (47) when (V+v’) = ( V+ 2v) btwomes
negative. ‘l%ua, for ( V+v) <0 and (V+ 20) <O the second mem-
bers of the equations (46) and (47) change their signs. It is only
with such changes m signs that the equations (12) and (13) from
page 23 become compatible with the equations (22)and (23) of
page 26, which always give AQ and AC in magnitude mid sense.

Let us exsmine in their general outIines the phenomena whioh
accompany the change of signs of ( V+u) and (V+w~). Let us con-
sider a blade screw working at a fixed point, and let us communicate
to the blade screw a translation along ita tuciaof increasing velooity
in the sense inverse to the sense of the thrust produced by the screw;
or let us consider a fluid current running on a bIade screw working
at a fixed point, with an increasing velocity, uniform in the whole
current, paraJ.Ielto the screw axis and directed on the screw in the
sense of its t Since in the slip stream created by the blade
screw the dip and race velocities decrease as we move away from
the blade screw, starting from the sections S’ and S’, there must be
formed, as soon as a fluid stream is directed on the blade screw in the se~ above indicatad, two
~.- of wpuratiun through which there must be no flow and between which the screw will be
included. This state of things is schematically represented on figure 7a. W’Menthe velocity
of the fluid stream directed on the blade screw is increased, the two surfaces of separation will
approach one another, tmd there wdl be a moment when one of these surfaces of separation

.-.=— —.=.---

/55. 2

—

—.. —

.——
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(it wilI be the one disposed in the indraught) wiIl cross the space swept by the blades of the
screw, This moment will correspond to the change of the sense of the fluid stream crossing
the space swept by the blades of the screw. At this moment the sections S and S’ of the slip
stream will be intmchanged. The crossing of the space swept by the screw bIades by the
surface of flow separation is oharacterizod by the conditions

(~+V)=O and {=w .,—.-. — . ...... . ..-
a.--”, ~:$.k-”-~, .-+rv:, -- , , , . . . .,:, ,, -, :.E.:. _,:k

which b–~ with kern a z= co ~d therefore ““z = o h V# o. We “thus see thd we mu$ have
iv= m t is, the blade screw will show a tendency b take an infinite rotation. The thrust
and the torque of the blade screw ham the tendency to disappear. In the case of a ship pro-
peller, in the state of brake work of the propeller, the whirling lh nonaetwn is often obsorved
aud corresponds to the conditions just described. When this critical point of work is passed,
a new state of work estabhlms itsdf, for which the two surfaces of flow separation am disposed
on the same side of the blade screw. We have ( V+u) <o but ( V+v’) >0, Between thl” two
surfaces of flow separation there will appear a vortex ring, stationary relative to tho blade
screw, whose axis coincides with the axis of the screw, as schematically represented in figure 7b.
I have named this last state of work of the blade screw the vortex riw atuteof work. This
state of work is included in the interval ( V+v) = o and ( V+v’) = O. We wilI dosignata by
w+# the value of the angle of attach which corresponds to this last condition. At the
moment ( V+VU) = O, the fusion of the two surfaces of flow separation takes place (see fig. 7c)
which is immediatoly followed by their disappearing as soon as ( V+v~ } ‘MM&mged ita sign,
which corresponds to the change of-sense of the whole stream crossing the screw. From this
moment on, the slip stream created by the blade screw is, so to speak, vanquished by the out-
side stream directed on the screw. The ensemble of the phenomena is just that which
accompanies the change of sense of the stream crossing the bkde screw.

For the vortax ring state of work, and for the states of work near to the kwt, the radial
velocities, near the space swept by the screw blades, have sensible values. Under such con-
ditions our system of equations (61)–(67) can give only an approximate characteristic of them
states of work, for the detailed study of which the radial velocities have to be taken into account.
I will Emit myself here to the establishment of the existence of the vortex ring stati of work
and will not go into its detailed study.i

Remark II.-The complete cyclo of states of work of the blade screw includes the states
of direct rotation, that is rotation in one sense, and of rever8cdrotation, that is rotation in the
inverse sense. The statas of work of direct rotation are separatad from the etates of work of
reversed rotation by the dmd@7 stcta. Whan the blade screw is stopped in a fluid current,
the angles of attack of the blade EJementshave for values

We thus see that the states of work with rotation in one sense are included in m interval of
variation of the angle of attack i equal to ~. On the other hand, it is easy to see that the
states of work of rotation in one sense can only be the reproduction of the states of work of
rotation in the other sense, when the screw blades are of identical configuration on both sides.
Under such conditions all the quantities characterizing the bkide scrgw working must be
periodical functions with a period equal to m. Tl@ remark will allow us in the present case,
i. e., of blade elements constituted by flat plates, to judge of the values of the function con-
sidered in an i.qterval of variation of i equal to 2r, when this function shall have been studied
in an interval of variation of i equal to r.

1llr~euthor k been depr!mii of the -fifty of repmducfog experfmdsdly We M8restfng vortex rfq st@teof work. Alltheforegofrrg
demrfptlon of the pbenomewn hee bran obtefned by its prusly anelytkef dlemeeim.
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As for the stazdng states above mentioned, it must be noted that, the screw having no
rotation, the phenomenon of the slip stream disappears, and it is to be expected that our system
of equations will give only an approximate characteristic of three standing states. But when
the standing states establish themselvw we have simply to do with an immobile screw phmged
in a fluid current directed along ita axis, and, accordingly, this standing state can be very easily
submitted to a direct experimental study, since we have only to measure the drag of the blade
screw and the torque necessary to prevent ita rotation.

Having established the existence of the vortax ring state of work and the periodicity of
the function describing the bladwcrew work, we shall study first from a purely analytical
standpoint the general character of variation of the principal functions occmrring in the blade-
screw theory.

Let us first qamine the general course of the functions az and ctg 03’–P) which @e in
all the formula (62)–(67), and which depend upon the empirical functions ki and p’.

We have

(68)
~z=afiisin @’–p) v

213in’(i-p)-m ‘ ““- “ “’””

For i-p, az=+~; the function as has an asymptote parallel to the axis of ordinates and
we have ( V+v) =0. The function az is equal to zero for i?’= P which corresponds to a very
small angle of attack i=c. For vtdues of the angle of attack in~uded between p a i > e the
function m takes positive valuea For ( V+v’) = O, we have as= -1, the angle of attack
having the value i= – [r– (p +t)l. h tie k~val– [~- (P+$)l =i=p, the function as takea
negative values. The general course of the function az is represented in figure 8, where @e
siagnof w has been changed in the interval i< – (T– P) and i > (P+ ~). The function az appeara
then as a periodical function with a period equal to ~, in complete agreement with the fore-
going remarks, and under such conditions the s@em of equations (62)-(67) can be considered
in the whoIe interval of variation of i betvieem0° and + 180”, with the exception of the interval
corresponding to the vortex ring state of work. For this last state of work the portion of the
curve of m is plotted in dots, in agreement wifi the change of sign in the equations (46) and
(47) indicated above. In this same figure 8 is represented the general course of the funotion
ctg(fl’ – P), which directly follows from the general course of the empirical function p’.

After having established the general character of variation of the functions as and
ctg(p’ —p), it will be easy to follow the general course of the functions:

(69)

(70)

(71)

(72)

r~ -az(l +&?)
v ~_m otg(lY-p)

1 –a.? v
x ‘tg q[az(l-i az)ctg@’”-q) –ctg(i-q) ‘2VE

1–(ZZ ,_p) CQ ~_q)l-* .-.
p -ctg@’ – P)[az(l + az)ctg@ –

----

..

.—

..

—-. —
— ---

-—.

(73)

(74)

(53)

V–“’t’g P&wm

U(1 + a4Ctg (8’– P);=s tg p —
l–as

.&w
~-(l-a)z —...
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By aid of these functions we can in all the cases appreciate the values of the dip and race
velocities and follow the variation of the specific function and the partial thrust. In fl the
follo~w diagrams the parta of the curve corresponding to the vortex ring state of work are
represented by dots.

In figure 9 are represented the functions v/V and ra/V. These functions have an esymp-
tote in common for az - 1, that is, V-O; the function ru/V hes SJSOan asymptote par-to
the axis of ordinates for U= ca; that is (V+u) =0. Both functions are equal to zero for
az=O. The function ru/V is equal to zero once more for U= –1; that is (V+w’) -0. A
maximum and minimum of the function rw/T are fixed by the condition

taking into
or * 180°.

In Fig.

Z%[”fi:)l-”
account that otg (&— P)=l for angles of attack having vsluea not too olose to 0°
From the foregoing equation we find

12 are represented the functions z and p. For i HO, the relative pitch x being smaller
thanunityhesvahms-marunity. Therelativepitdm is eqmd to~ero for a. = i and as = co-andgoes
through a maximum between the values of az which corrmpond h values of the angle of attack
included between i =iO tmd i E q. As by ddnition z = V/NH, the relative pitch can take the
value zero only for V= O or N= . But to the value i=p corresponds the beginning of the
vortex ring state of work with N= oc; as a cmsequence, to the vahm i=io will co-pond V==O,
that is, the state of work at a fixed point. The relative pitoh z= co, that is, ad@ta an asymptote
parallel to the axis of ordinates, for

az(l+az) Ctg (J!?’-p)-ctg (i–p)

This lest relation gives two vsluee for the angle of attack i, one positive, the other negative,
which are approximate values of the angk of attack corresponding to the standing states,
while for z= 00 we have N= Oon account of the relation z= V/NH. It is easy to see that the
angles of attack of the standing states have for exaot values

,.

In the inhrvil 4’= <i<% the relative pitch takes positive values. In the interval i. <i <i=
the relative pitch takes negative values. For angles of attack whose difference from the-pre- .
ceding values are equsl ta 180° the relative pitch takes the same values. For values of i for
which Ctg @’— q)~l we have PSZ, Whi.kwe 8dId Q=45’. The specific function p= co,
that is, admite an ssymptote parallel to the axis of ordinates for ctg (/3’–q) = O, which corre-
sponds to i-— c. In @e interval i’=<i< –c the specifio function p hss a minimum greater
than unity, and has a maximum Iese than unity in the intxlrvd –c<i<&.

In figure 10 are represented the functions @.2 and w/r#. It is essy to see that for small
values of m we have a/ilsv/rQ. These functions have the same ssymptotas, parallel to the
axis of ordinates, ss the relative pitch z, and are equal to zero for u= O, that is, i= c. When
i tends towsrd ita value i= p the function @ tends toward unity, snd th~ funotion v/rQ
kinds towed zero. The function a@ is equal t.a zero for ~= – 1.

ln &g. 11 is represented the general course of the function g. This function is equal to
zero fora.z-=o that is, i=cadfor m=m, hatk, ~-q. This function has an ssymptote parallel
to the axis of ordinates for az - 1, that is, i ==i.. This function takes positive values in the
inhrval C<i<p and n0g8tiVe VahMOk b iRWa~ G>i> – (~–q).

\



After these preliminary considerations we csn psss to our general discussion.
On tlgure A the specific function p is represented ss a function of the relative pitch z. On

figure B is represented the complete system of statm of work of the blade screw, whose con-
tinuous sequence we shall establish by the study of the specfic functional

We shaU start our discussion from the moment when the screw rota- at a fixed point
with the anguhw velocity il (see fig. B, 1). We have V= O. Under such conditions the blade
screw can fulfill the functions of a fan, or a helicoidul pump, or be a lifting 8crew (heEcopter
screw). The relative piti z and the specitlc function p am both equal h zero. The function
U, = directly follows from relation (61), is equal to unity.

(76)

This last relation fixes the value of the angles of attack of the btade ekunenta considered, for
the work of the sorew at a tied point. We will dw.ignati by {Othe angle of attack defined by
the relation (76), as hss already been mentioned in the foregoing. It is easy to see that this
hst value of the angle of attack is independent of the angular velocity Q of the screw rotation.

The slip velocity in the indraught being equal to

(77)
az ILZ.TQ

‘=* I–a.zz @ ~-u(l+az) Ctg (p’-p)-ctg (i-p)

substituting az -1 we get

(78)
r$l

‘“-2 Ctg ((3’-p)-ctg (;o–p) --
. .

When the values of i. and w“are known, the relations (66) and (67) give the value of the
psrtial thrust AQ and partial torque AO of a blade screw working at a tied point.

We will designate by fan velocity the slip velocity in the section S“, that is v’ =ZV. It is
to be noted that this fan velocity is in direct connection with the thrust. If the blade screw
produces a thrust, there must necwmrily be a fan vekwihy; and, inversely, when there is a fan
velocity, there must be a thrust. f%ch a state of things is a direct consequence of the momen-
tum theorem.

We will estimate the blowing effeot of a bkle screw by the quantity

(79)

(80)
OX? W t.g (/3’-4”)

‘v=Wz=fza+fzz)ctg(/?l’-p) –Ctg(i-q)
.

which we wilI callfan q%iency. In certsin cases, whm the blade screw is propulsive, for axam-
ple, the fan eflicienoy represents in reahty the~an Zomesjwhich we will in such csses designate
by p,. We shall take up this lsst question more in detail in the following. When a blade screw
is working at a fixed point, the fan efficiency gives a valuation of the whole useful work pro-
duced by the screw, which exclusively consists in ventilation, or more generally in transfer of
a fluid. In such csses we will designate the fan efficiency by p~ Substituting in the relation
(79) az= 1, which corresponds to V= O,we get

(81) Q (8’– P) % @f_p)
p“=2cq&—p) –c@Go–p)-rQ@

1Far a better vfew of the gened ccmrse of tha SPUMCfonctio% some LEM’LSof !t hve km platted on a hger scda III fk. B. h fig. 13b SMU
an ezact dmwlng of tha spwlflo fmwtfon In ogmnmmt wfththaforqfo@ d@rams. Itnmstbenoted thatthedausfon of th, We.rent parbl of

the spwfEo function cum depends upon tha type of blade somw causfdmd.
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The state of work of the blade emw at a fued point is schematically repraented in figure
B, 1. On the curve of the speoiiio function (see fig. A) the origin (z-o, P-o) is the represent-
ative point of the work at a iixed point. In this same figure A, I have represented the curve
of the fan eillciency p~ as a function of the relative pitch.

Let us now allow the blade sorew to take a tran.datmy motion in the sense of ite thrust.
The blade screw will become rmhelimidal propetler. The specific function will represent ita effi-
ciency. As the velocity V goes on increasing, the relative ,pitch, starting from zero value, will
take positive valuea. The angle of attack i will go on dwe-; tie function az will ramain
positive, but less than unity. As long as the angle of attack remains in the interval for which
# has vshs near to u/2, the dioiency p will be nearly equal to the relative pitah z, as direetly
follows from relation (63). But, when we reach the interval of valuesof the anglee of attaok
i for whioh f?’ deoreasesrapidly, the specific function P, after having reached a maximum always
less than unity, will rapidly decrease. This maximum of the sptic function cmresponds to
the maximum of the propeller etlitiency. The propulsive state of work of the blade screw will
end when the specific function retakes the zero value, by the faot that the partial thrust AQ
beomnm equal to zero. At this moment p’ E P and the angle of attaok haz the very small positive
value e. The function az is equal to zero. The relative pitch z has a value very near unity
but a trifle leas. k affeot, from the relation (!32)we direotly find:

l–azx= .
aki SIII

@– f(l+az) ~ $,::] -Ctg (i-p) tgp2 Sin* (i–p

and substituting 19’- P; az= o; i= c we get:

(82)

It is thus seen that the propulshe state of work of the blade screw is included in the interval

(83) O<x<l
in which

(84) O<aa<l; E<i<i.

(w) O<p<l

The proptilve state of work of the blade screw is schematically represented in figure B, 2.
It is easy to recognize on figure A that part of the spetic function which corresponds to the
efficimcy of the propulsive screw. If the point z = Ion the axis of absc~sae is adoptd as origin,
and the inverse sense of this axis taken as positive, the specific function will then represent the
well-known curve of the propeller ei33ciencyas a function of the slips E 1- z.

When the angle of attack deoreases, starting from the value i = e, the relative pit.ahz will
remain positive and will go on increasing; and from the propulsive stata of work of the sorew we
will fall into a very short int.mnediiztesta4eqf brakework, which will bring us asymptotically to
the turbo-motor state of work of the blade screw. This intermediate state of brake work cor-
responds ta very small variations of the angle of attack from i E c to i = - c (considering P=46°),
the angle p’ varying from 13’=P to 19’=- P (see @g. B, 2 and 3). The value z= 1 (for i=UO
and B’- O is thus inoluded in this intermediate state (see @ A). For @’- -P we heve
ctg (f?’ -q)== (), AC-O, P= +~. The branch of the sptic function corresponding w the
intermediate brake state has an asymptote parallel ta the axis of ordinates. The value of the

-.
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relative pitch, abscissa of this asymptote, aIt.hongh greater than tity, is, however, near to
unity, and its va.hreis obtained by setting i - c in the relation (6.2).

At the right-hand side of the asymptota just deskribed is disposed the branch of the specific
function which from positive infinity quickly reaches a minimum greater than unity-as directly
foIIows from the equation (63)-and takes afterwards values increasing up to infinity, by a
parabolic branch naarly rectilinear and bisecting the angles of the positive axes of coordinates,
while for 19’s - r/.2 we have ZZP (see@. A). This branch of the spedc function corresponds
to the turhnotor dute of work of the blade+crew, schematically represented in ilgure B, 4.
In this intarval the specific function is equal to the inverse of the efficiency ~ of the turbo-motor.

(86)

The curve of the efficiency ~ is represmted by dots in figure A. For the study of the turbo-
rnotor state it is more convenient to consider the efficiency %= l/p as a function of %= l/x.
The curve of ~ will then be like the curve of the e%iciency p of @e propulsive screw. In the
study of the turbo-motor state of work we wiU use these hst variables. The turbo-motor state
of work is ended by the stoppage of the blade screw (see fig. B, a’). This takes place when thti
tmque of the resistance applied to the turbo-motor axis becomes equal to the turbo-motor
torque. At this moment
(87) z==m; p=wJ; zT=o; pT=o

We thus see that the turbo-motor state is included in the interwd:

(88) I<x<m; 0<%<1
in which

(89)
()

O>az> -l; –E>i>– ;–

(90) l<p<w; O<p, <l

lf we now apply ta the turbo-motor axis a power and oblige it to rotate in the inverse sense,
the blade screw will be transformed into a hydrauIic brake (see fig. B, IV’). To this last state
of work, included in the interval
(91) -oa<z<o

corr~onds that part of the specific function curve which from negative infinity by a nearly
rectilinear branch, bisecting the angle of the negative axes of coordinates, ia directed toward
the origin.

kt UYnow return to the screw working at a fixed pointand oblige it to take a tiandatory
motion in the sense inverse ta its thrust. The blade+crew will produce a braking action (see
@. B, 2’}. The relative pifxh z and the specific function wiU take negative values whose abso-
luta magnitude will at first increase; the curve of the specific function will nearly follow the
bisectrix of the angle of the negative axas of coordinates, because 6’ has vahms near to r/2; but,
as in this interval as is a function increasirw UP ta infinity, P and z, after having reached a
maximum in magnitude, will retake zero ~du-w. In fac-ti divi~ the
we get:

.—. —
az~ a z

‘-=++ ;C%:f-;g]

rektio~ (62) by az
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which expression, for a z==, is equal to zero. But aftm having reached zero values P and z
retake negative values. We thus see that in this interval, the specific function describes a
loop, reaches the origin by a cusp and by a parabolic branch nearly rectilinear and bisecting
the anghs of the negative axes of coordinates, goes to negative infinity (see fig. A). When the
specific function describes the loop, we find oumehms in the $mt brake 8tate, characterized by
the formation of two surfaces of flow separation. (See fig. B, 2’,) The cusp correspond to the
whirzing phenomenon mentioned in the foregoing, characterized b,y the disappearing of the brake
action and the tandency of the blade-screw to take an idnite rothtion. Aftarwarda the vorkx
ring stuteestablishes itself, during which takes place the change of the sense of the fluid current
crossing the blade~crew. (See fig. B, 3’.) The vortex ring state is ended by the fusion and
disappearing of the surfaces of flow separation, after which a 8econdbrakestateestablieheaiteelf.
(See Fig. B, 4’.) If it is the screw that has a tmndatory motion, we have to do with rtbraking
action m. in the case of ship propellem. If it is a fluid current that is directed on the blado-
screw we have to do with a hydraulic brake. The second brake state finishes by the stoppago
of the screw with fi=o; X= P=+P. (See fig. B, a.) If we now continue tn move the blade-
screw in the same senw, or’ direct on the screw in the inverse sense a fluid current, and nlIow
the screw to take a rotation in an inverse sense, we fall once mme inti the turbo-motor stati,
but only with a rotation in inverse sense. (See fig. B, IV.) The two stippage stake a’ and a
thus separate the states of work with rotation in one sense from the statea of work with rotation
in the inverse sense. The states of work of reversed rotation are represented in tigure B.
llmy constitute, as it were, a picture as rekcted in a mirror of the states of work of direct
rotation, and they close the complete cycle of dl the statas of work which a blade-crew can
run through. In the case of the bbtde angle q= 45”, the statea of work of direct rotation aro
quantitatively identical with the states of work of reversed rotation. In the general caee the
states of work of direct rotation will be only qualitatively like the std.ea of work of reversed
rotution.

If we now look back to the foregoing discusion, th.dollowing picture appears: The
complete cycle of b states of work’ which a blade screw can run though comkte of seven
states of direct rotation and se~en states of reversed rotation, separated by the standing states.1
The states of reversed rotation constitute, ss it were, a reflected image of states of direct rota-
tion. Figure B givee a schematical representation, of the complete cycle of these states of
work. The specfic function unites into a continuous whole all this system of states of work
of the blade screw. The zero and in$nite valtm of the 8peci$c function 8eparate the djfftmnt
dai!es of work me from the other. The maxima and minima o~the 8pe4&Lcfunction indkate the
mo8tfavorable workh.g conddkww oj thi?bkde 8crew in the corre8pondiw 8tute8.

I shall finish this chapter by mentioning two very interesting cases of blade-screw working
which at fit glance may appear rather paradoxical

Let us consider a blade screw with a constructive pitch equal to Mm whose blades
have their sides of diihrent configuration. (See fig. 14.) II is evident that the rotation of
such a screw at a fixed point will produce no thrust. But it is sticient to communicate to
such a screw a translation in one sense or in the other to get a thrust. The propulsive thrust
will appear from the moment when the velocity W has such an incidence on the zero line that
the fluid reeistamceAR will be disposed on the same side of the screw rotation plane as l?.
With the notations of @.re 14 we will hm a proptiivethrustsssoon as the angle of attack
hm a value greater than the one which corresponds to

IExactly sp- to thesa 16 states of work haJ to be addad a 17th X it fs tie OM titi V-a n-O dkPOd betwaen tho two statw Of
—..

work at a Zxa-dpofnt wltb dIract and ravarsad mtatfon. ‘rho COMPlatOCYOhOfstates of work of ● blada mraw ts tbIMs doubla CYO1O.
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Let us consider again a screw with blades of different configuration on its sides, but with
a constructive pitch equal to zero. (See fig. 15.) It is evident that such a screw disposed in
a fluid current parallel to its axis will take no rotation. But it is snflicient to communicate
to such a screw a rotation in one sense in order for the screw to remain rotating in that sense.
The blade screw wiU become a turbo-motor from the moment when the angje of attack takes
such values that IV and AR are both disposed on the same side of the plane of the screw rota-
tion. Those values of the angle of attack depend upon the disposition of the zero pIane relative
to the blade sections considered. The working of blade screws under this last condition is
known under the name of automtu&m1 and has been observed by severa~ experimenters.

II
I

Iv’

FIG. 14.

Our system of fundamental equations emi.ly embraces these two cases of work of a blade
screw and sllovm their complete quantitative study. These two cases of blade screw work
are particularly fitted to show the great importance of the eflective pitch. In the cases con-
sidered, the constructive pitches have values equal to zero md inhitty, but the effective
pitches have tl.nitevalues, and there is nothing paradoxical in thwe cases.

After this general review of the phenomenon of working of a blade screw, we will pass to
the special quantitative study of the difhrent working states which can take place for a blade

—

screw; we shall begin with those states of work which are the most important owing to their
tachnical applications.

-..,- ____
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CkAmER HI.

THE STUDY OF THE PROPULSIVE SCREW.

For the study cd propulsive sorews or propellers it is more convenient to use the angle P=
which we will for simplicity designate by # in all this chapter. In the first chapter we have
established the following system of formuhe:

akicos (p+lll) M Gos(P+p) ..
(92) ‘-*0= 2 sin’ (q–i) - 2smz (q-~) ‘

. .

(93)
(1 -W)tg(q-i)

~-~-tg @ +Uz(l +a)tg(p+p)tg(q- i)];””” ““““ ‘--

(94) 17AQ x tg ~ (1–w)tg(p-i)
‘-m-tg(p+p)-tg(q+ p)[l +az(l +az)tg(p+P)tg(P-i)J;

(95) v= vl–~~ = rn —~:uP tg (w+@);

(96) ~u-@ ‘az) vtg(@ +6) -mu: +uw)PtjgVP+P);
1-(ZZ

(97) AQ= 28ASV(V+u) =q~tip;

(98)
2(M

!?=(l_@s: -. —

(99) AC= AQrtg(q+b};

.—

. . .

v

-——. .—- .: ..-:.. ,.;,, ;

J
I

~0. 16.

In the second chapter we have introduced the notion of fan efficiency

(loo) -—-- ..—

Introducing this quantity in the formula (95) and~(96) we get

(101) v=~Petg (P+l$)

(102) m -(1+ az)r%. tg%(p+ B)
10s
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For the case of a propeller the fan eflioiency P, represents the fan losses p,. We thus have

(103) p, -P*

For the propeller working at a fixed point we have V==O and consequently

(104) a.z==1

as diredy foliowa from relation (92). The cmdition (lo4) can also be written 1

(105)

This last relation defines the angle of attack of the blade element considered for the bkde
sorew working at a fixed point. As this lsst relation does not oontain the sqgular velooity w
we are brought to the following important theorem, whbh gives the fundamental characteristic
of the tied point sorew working:

TIIEOEEM~.— When a Hude screw ie uxn%ng at a fixed point, the angles of attud of ail
the blade 8ecti0ns have wnetant value8 independent of the angulur velocity of the 8erewrotatwn.

We are thus brought to the conclusion that for a blade sorew working at a fixed point all
the quantities that are funotions only of the angles of attaok of the diihre.nt blade seotiona
keep constant values independent of the variations of the screw rotation.

In the semnd chapter it was also mentioned that for the tied point screw working the fan
efficiency gives the evaluation of the whole useful action produced by a blade sinew, which
oonsists in blowing, or, more generally, in transfer of a fluid. Substituting in the formuke
(100), (101), and (102)az=-1 and replacing p, by PO we get:

(106) % (fP-i)
~“-tg (q+fl.) [l+2tg (P–to) % (9+60)1;

(107) Vo = @oP @ (P+ #o)

We thus see that the partiul &tiw POof a ~~e 8m~ Qta fied P~~ ~ a ~~~nt- ~nde-
peruhnt of the angular vehcity % and thd the 81ip and race vekwitiee UOand mo are proportional to
th~ angular velocity %. The slip stream oreated by the blade~crew rotation at a fimxl point
remains thus similar to itself independent of the mgcdar velooity of the screw. The oordguration
of the stream lines of the slip stream remains thus invariable relative to the screw axis; and
it is only the veIooities along these streamlines which vary proportionally to the angular velocity
of the blade screw.

The values of the partial thrust and partial torque of a blade sorew working at a fumdpoint
me given by (see the relatio~ (97) ~d (99)):

and it is easy h see that we have

(111) ——.—
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From this last relation it directly follows that for the evaluation of the useful action of a blade
screw at a tied point, the slip velocity VOplaya the same r61ens the velocity V of a propulsive
screw.

The expression (97) of the partial thrust becomes indeterminate for V= Obcc.mm we have
tn. g==O. It is why, when we hav6 to follow the work of a propulsive screw up tu the fixed
point, it is more convenient to consider another form of the partial thrust which cnn be obtained
from the expression (97), putting in eyjdence in it Me anguhw velocity Q. We have:

AQ= @@ V’ = q8A19&W ;

hut as

;=xtgv
we have

(112)

and on account of the relation (100)

(113)

We thus finally get

(114)

This last relation goes directly over into the expression (109) for V= O (m- 1; i-i.).
Adopting the notation

(115)

we get

f-f -~t.g’(p +/3) --
C&stg(p-i)rl+w(l+&)*(q+p)~g(p_~)l,” - -- .. . .... ..-”

-.—— _

(116) AQ = 2~ih9r%P

with

(118) .-

1 will limit myself here to thwe brief general considerations concerning the work of a
blade screw at a fkd point, which we will need for the following developments of this chapter,
whose main subject is the propulsive screw. The working of a blade screw tit a fixed point will
be submitted by us to a sepamda detailed and complete study,

We shall begin the investigation of the propeller by the considorntion of its 10SWS. i
divide these losses into three kinds:

I. The fan losses p.
H. The vortex 10SSCSpt.
III, The resistance losses p,.

The total losses will be the sum of the foregoing losses:

(119) P=pu+pt +Pr



THE GENERALTHEOBY OF BLADE SCREWS. 201

I call fan losses the ratio to the totaI power absorbed by the screw of the kinetic energy of
the translator motion of the fluid in the slip stream communicated to it by the screw. As
has already been mentioned, the fan losses which mm-pond to the blade elements situated at
a distance r from the screw axis are equal to:

I caU vortex 10SSCSthe ratio to the total power absorbed by the sorew of the kinetic energy
of the rotational motion of the fluid in the slip stream communicated to it by the screw. The
vorteix 10SSSSwhich corr~pond to the blade elements situatwi at a distanca r from the screw
axis are eaual to.

(121)

1 call resiatanoe 10SSSSthe ratio to the total power absorbed by the screw of the power
spent in the displacement of the blades themselves in the fluid. We shaUobtti the resistance
10SCSwhich correspond to the blade elements situated at a distance r from the sorew axis by
taking the difference between the total Ioeses and the fan and vortwx losses.

(1~2) pr-=p – (p. +P:)

- !%-++” “ “ ‘“””- -Pr–p I–w)tg p–%

It is easy ta see, as direotly follows tim the relations (113),(114)and (116), that all the quan-
tities characterizing the screw working can be expressed as functions of the losses only. Let us
for example calculate the load eoeflicient g as a function of the losses. from relation (113)
vie get directly:

(124) ,.=, ..-

and substituting this last value of az in the relation (98) we find:

This last relation shows us that a propeller of high efficiency must necessarily ha-ie a smell load
coefficient. For example, for p-0.8 and p@sO.OSwe have Pa/p@. 1 and gsO.2. It has always
been experimentally noted that high efficiency propellers have values of the load coefficient
near that obtained above.

Let us now esamine the conditions of the maximum of tha partial efficiency p of a blade
element of a propeller. The maximum of the eflioien~ (see relation (94)) depends upon the
course of the empirical functions I?and Iii. But if we note that in the propulsive interval of the
screw we have PSZ as long as IIWO,that is, for angles of attack i >i’ (i) and that afterwards
P is a rapidly increasing function for i <i’, it is easy ta see that the maximum of p takes place
for values of 8 and i near 6= Oand i =i’. We wiII oalI optima angle of attack and dwignate by

(1)I_Mbyf~tie~h&atWti wMtit&6tidtiX ABhn~@ti~pti Ses Note~bttiemdcltb.ts memofr.

.—. ——.-

—

●

.
—

.—__ ..

.+
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{aPCXi’,the angle of attack for which the partial efficiency p is a maximum. Under such con-
ditions we can consider, m a first approximation,

(126)

with

(1–aa)tg(q-i’)
~-~=tg;-l +az(l +w)tgptg(p-i’)~ “ – “- ‘ “- ““

,. ...

We thus see that as a first approximation we have

p=l–pm=-l–z=8

THEOREM IV.— ~n a bhrde ekt of a p?’cpukive 8crew is working u?ui% dit&m8
neur &%muximume$iciewy, b%8Ziph nearly equal j!o it%total108888,and it8 relative pitch is nmrly
qua? to it8 e@iency.

It is now easy to understand why in propeller practice only screws of low slip show high
efficiency.

Let us now axamine how p~~ varies with the blade angle p and the angle of attack &P. We
shall see in the following that high vahm of p- are.only possible for low valuea of the optima
angle of attack. Under such conditions the function az will have a low value, of the order of a
small number of hundredths; that is why, for a first orientation in the actual question, we can
neglect az in the expression of pm= and thus admit

(127)

Fm. 17.

pmJw&ilJ. .

, a I 1 1 I 1 x 1
i - II

In figure 17 have been represented curves of the partial &ciency pm M function of the efloc~ive
blade angle p for difhent vahws of the optima angle of attack&. It is easy to see from this
diagram that the smaIler the values of iOPthe higher arp the maximums of P-, and that the
maximums of P.= occur for dims of P near 45°. In figure 1S are given the vihm9 of Pm. -.
as function of im, and tie am also represented the co~onding values of p, An examination
of diagram 17 brings us to the following rule which must be used for the choosing of the prdles
to be adopkd for screw-blade sections.

For the 8ection8 of 8crew b~e8 tht?re mu8t be adtiptd pr@?e8 wh08e optima ang~e8of attucii
me us m.a71 a8 posm”bk.

..-
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Thk rule dlOWSus h me directly the partial fiCiCUMYPIW m= ss a fit aPPm~mation
that can be expected from a given profile. To give a generaI idea of the valum which the
optima angles of attack can have, in fgge 19 is reprwented a serkisof 13curves as functions of{,
for the csse of air screws, for plane-convex profiles whose ratios c of the thickness e to the breadth
~ are increasing.

(128) c=! 6
By aid of iigure 19 was eatabliahedfigure 20, which gives for the profiles considered
as functions of c. In the same figure is represented the curve of the angles y of
of the profik considered with the corrmponding chords.i

FIG.IQ.

. - 7 TI
L. .-j%

I I I t

11-. A-A I t

the angles iop
the zero lirm

——

-———

.

FIG. m.

On account of the fact that the valum of the ratio c gO on necessarily decreasing from the
boss to the tip of the blade, the optima M.@ of attack must also go on decreasing from boss to
blade tip. It thus follows, according to diagram 17, that the blade elements, whose blade

——

angles ~ are a littie smaUer than 15° or lqer b 75°, n~-fiy have sm~ Pm~al
efficiencies ~. ~ccmlimg to the last, and on account of the relation H=2nr tg p we can give
ourselves a general idea of the limits betmeen which must be included the portion of the blade
which gives high partial efficiencim: —

(129)

[

H
‘“= 2- sO, 05 H’

H
‘m= 21rrtg 16° = 0,6H
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These last relations bring us to the conclusion that a propeller of M@ ejbiency mu.et ?wve.it8
diameter of the ~ame order of magnitude aa the efective pitch of its tip Uade W&W. This remark
gives a solution to the question of the number of blades to be adopted for a screw? For the
preliminary design of a screw, the condition (126) &es the effective pitch H of the blade section
considered. We have

The value of the eflective pitch appears thue to depend upon the ej%iency expected, and depends
upon the power absorbed only so far as the ratio c.= efi depends upon this po~.er. It is the
blade area A and the screw diamet.m 11 which depends upon this power. If the diameter is
considered fixed by the relation

L)=29’m E 1, ZH

it will be suiiicient, for a given power, ta adopt as many bltidw of a length of the order of r~, m
will be necessary to absorb the whole power, The limit to the number of blades is given by the
following considerations:

I
I

i
I

Let us cut the screw blades by
in the pkm the sections obtained.
21, where wo ha~e designated by h
comidcrsd. By analogy to what we know about fluid resistance of systems of acrofoils, the
blade interfe.reucowill occur only from the momont when the ratio

Fm. 21,

a cylinder coaxial with the screw axis, and let us develop
We will thus get the general picture rcprmented in figure
the distances between the zero lines of t.hc blade sectiom

(1:30) -i-’
lwmmes smaUer than a certain biting ~alue to be tied by e.xpmiment. Actually we do not
possess any experimental indications of the limiting values for v in the case of screw blades.
For a tit orientation in the question let us adopt

(131) , p>~ ...-.

which will bring us to the conchtsion that for

.-

(132) ~~~
.

~In Ids alr-eoraw IrIrr&Igations 5. Drwwle6kI (ma’~Hellcea Aeriennaa,)’ Parts, 16W),dmreaches the mnclnaion that Chineexist.s a Ilmlt to ?*
ad mnteq.wmdy used for the length of aarew blades, and that the number of blades to W adopted for e.mrew depends upon tbts Urnltfng lcn@h.
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an absence of screw-blade interference is to be expected. If we note that

(133) ii +’ tg p

the condition of absence of screw-blade interference wdl take the form

(134)

which means that under the a88umpti4m8nude fbr ab8enceof 8crtw.Wdde itierjkrence the bwadth
ratw must 6e mull-w than the tine of the ej?eotive?X!udeqik. This lastcondition can also be
written as follows:

We will designate the product of the number n of blades by their breadth b at a certain distance
from the screw axis by totulbreadth.

In the general case, without asumin g the value of the coefficient v, for the abswce of
screw-blade interference, we find the conditions 1

(136) h>vb ,

(137)

(138)

When iti is difTmultto realize the condition (135), or, more generally, the condition (138),
attampts will be made, however, to approach them as near sa pcmible. But since, on the one
hand, as is well knowrq the maximum breadth bx of the blades must be smaller than a certain
fraction of the screw diameter, and, on the other hand, the screw blades are working in a stream
quite well limited, in all probability the vahm to be adopted for the maximum breadth b. can
be quite large. The limiting vaIue which will be adopted for the total breadth ~ and the
maximum breadth h wiU iix the limiting number of blades.

Since for a screw of high e.fticienoythere exist superior limits for the diameter D, the number
of blades n and their maximum breadth fix, the thrust power, which can be obtained from a
propeller under given conditions, must also have a superior limit. If one tri+ t.agive to D, n,
and bx vaIues higher than the Iimiting values, only the absorbed power-that is, the torque
power—will be increased, but the rapid decrease of the efficiency will lower the thrust power
developed by the propeller.

1Someeleman@@mMere.tlmallowwb *U for the Umiting value L of it, Lx akuem!ecdeorew-blede Merfemnca the formde

.—__

.-

-.
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Making a summary of the foregoing discussion, the following rules can be formulated for
high efEciency propellers.

L &oh h!ade 8ection.mut work under an angle of attack near the optima angle. FOTWzde
8ectti we mmt adopt& projik that their optima angh of attack are a88mW a8 po88We.

~. l’he screw diameter mud/M of the 8anMorder@ magnitude aa l%?e~kctive @ of the tip
blade 8ecti0n.1

~~. ~ total bhde breudth in each bhuii?8ection mu8t not exceed a valw~ed by the ~imiting
value of the breadth ratio (dti (137)).

IV. The maximum Made hwuith mud nd exceed a cmtainmi.on of the dimn.eta.
V. F& givin working cm@tion8 be &ha ~imtiing idti “ofh“ thru8t power which a pro-

pe?hwcan”dwelop. ““” “- ‘“” ““ ““ ““”””

I I 1

==-#-----+-

/’/v.// J ~
I
I I

rm. 23.

Some investigators have made the following experiments for the determination of the
blade interference. They hme &t tested two identical screws separately, and afterwards
have testad them coupled on the same axis. They have found that the efficiency of both screws
working together was different.@rn the efficiency of each screw working separatcdy. Such an
experiment does not prove at aIl h blade interference. As a matter of fact, two identical
screws coupled on the same axis will fit of aUh8ve a double breadth ratio compared to a single
screw. But then, as directly follows from relation (93), the angles of attack of fihe different
blade sections, for the same vahm of the relative pitch, wilI take other valuea, the breadth ratio
having changed. The partial ~emcies will thus be modified and the total efficiency will there-
fore also be modiiied. Accordingly the modi.flcation of the efficiency of two couplod screws
is first of S.Ha tinsequmce of the breadth ratio variation, as long as the conditions (135) or
(138) remain satisfied. When we speak of blade interference, we shall always understand by
this a modification of the values of the empirical functions k{ arid19produced by the neighbor-
ing blades. It is only in the Iight of this remark that blade interference can be studied,

When two screws are coupled, the following circumstance can also take place. Let us con-
sider on one hand a screw with 2n blades, and on the other hand two screws with n blades each,
both coupled on the same axis. From the screw with 2n blades we can pass to the system of

lIthdyti th8bMeea&no forwhiolr thobleda mrgles~erene& MOthUthe @rJefdcfenw wlIlhavethegredest values mnrpatible
. . . ..-—

with the mrwpMI@ optima srrgh of attalz. But M H-% tgq,fct@ 45”mhave

r ~+~
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two screws with n black displacing, for example, the odd blades of the 2n blade screw along
the screw axis. We will thus be brought to the picture of the figure 22, where I, II, III, IV,
V represent the developed sections of a 2n bladescrew and 1, II’, III, IV’, V represent the
developed sections of two coupled m bladescrews. It is easy to see that in the first case the
sections are disposed at the same distance h, and that in the second cwe the distances between
the sections are on one hand increased up to h’ and on the other decreased up to h’. If we
wish to maintain the distancw between the blade motions considered in the case of two coupled
screm, we must make the blades of the two screws approach in tie sense inveme to their rota-
tion according h the scheme I, II’, III, IV’, V. k figure 23a are repre3entf3d two screws
coupled according to the scheme I, II’, III, IV’, V and in figure 23b according to the scheme I,
IIm, III, IV’, V. This last remark explains the experiment with two coupled screws for a sym-
metrical and asymmetrical position of the last, made by G. Eiflelji which showed a small increase
of efficiency when the two screws were bro~mht nearer one another in the inverse sense of their
rotation. From the same experiment it follows that the interference of the scxew blades is not
large, because the results obtained for diihent dispositions of the screws do not show great
dtierencas. But the sum of the powers developed by tiioh screw separately Mere sensibly
from the power developed by the two screws when ccmpled, which show the very sensible
infiuence of the breadth ratio variation. When it is required to maintain for two coupled
screws the equality of distances between the sections of dillerent bladm, it will be necessmy b
give to the blades of both straws or to the blades of one screw a special form not difhdt to find.

All the foregoing relates h the study of the screw-blade elements, considered separately.
We will now pass to the study of the screw-blade elemental considered together as a system.
I shall begin by two general remark.

/

~ zi
*

+%

\r .

—- -—. .— —- —-- - —.—- —

I
‘\
~ ,.

‘\

Fm3.‘a3& Pm.m).

Remark 1.—M us consider eh bhde of a screw divided inta n elementi. Ikt us des-
ignate, respectively, by AQ1,AQ, ------ AQ~; @, AOS------ U; PI, h ------ p. the partial
thrusts, the partial torques, ~d b pmtial =ciencies of the bkde elements equidistant from
the screw axis. We have:

Let us deaignata by q the tdal diciency of the blade screw. We have:

VAQg+VAQ,+ ------ + VAQ..
~-w?l+fll w,+ ..-. -. +fkw.

-. --

...—

.. .. ..

.—

“.—
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Ikt us now examine the correlation existing between the total efficiency n and the partial
e%iciencieapi, pa . ----- p.. For that purpose we shalI use the following geometrical method,
Let us consider the vectms

u,, u, . . . . . . us

whose projections on the axis of abecissrnare equal, respectively, to

QAO1,QN?’, . . . . . . QAc.

and on the axis of ordinates are equal to

VAQI, VAQ, . . . . . . VAQ.

Let us build, starting from the origin, the geometrical sum Uof the vectors Ul, U, . . . ..- U,
(see @, 24)

U-ul+uz+.-.--+u,

IL .——.~.”A-?

IJla~

.
.—.. -

‘! >

Fm, 24.

The tangent of the mgle of in~ation of each vector Ul, U, ------ V. b the axis of absciam is
just equal to the corresponding partial efficiency

while the tang%ntof the angle of inclination of the rector U is equal to the total ofTkicncY

. . ... . ----

-%

~7(AQl+AQ1 +-”--- .- AQ~) , . .. ~ .-,tg(u, x)=w=: ‘Q {AC, +A~, +------ AC,)
—

Q being the total thrust pl~du~~ ~Y the blade screw, ~ the W~l~rque applied to ita axis.
The sides of the polygon U,, U..------ U., U are necessarily making with the axis of abscism
angles smaller than 45°. Considering thus the vector Z7as the geometrical sum of the vectms

U,, U2 ------ u., we soe direcfly how the ~tal eficfency iS built UPOf the pmtid effwienciesi
We can now sy t+t the to~l efficiency q not O~Y dep~~ upon the values pi, ~ ------ ~ d

the partial efficlencles, but depends also upon the partial powers VAQ,, T“AQ2. . . . . . VAQn;
QACI,QAC*------ ~~n b~’au~ the ~tal eficiency de~nds ah upon the length of the vectors
U,, U, ------ U.equalto

In figure 25a iS rep-ted the c~e Of a bl~de SCm.W~ho~e partial eficiencim decreaea toward
the blade tip; in %wre 25b @ C- ~f.P@&l ~~enCICEJUNXWM@ ~w~d the bl~e tip; and
in figure 25c the cme whe~ the Pwtlal efficlencNMfirst decm- and afkrwards increase from
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boss to blade tip. Ln all the cases the total alliciency is ~cressed when to the blade elemente
with higher partial efficiencies correspond Iarger partial powers. 11 follom from the foregoing
that it is advantageous to give the greatest’ breadth ta those parte of the bladea where the
partial efficiencies are highest.

l--

AC

#

/,

AC”

Remark JI.-bt us examine briefly the question of the eflective pitch of the whole blade
screw. When for a blade section the relative pitch becomw equal b unity, we have

E.;=p

and the knowledge of the advance which corresponds to z= 1 gives the value of the ellective
piti of the blade section considered. Aa we have seen, the value z= 1 is disposed in the inter-
mediate brake state which separakw the propulsive state of screw work from the turbo-motor
working state (see @. A). Practically, this intirwd is very short; that is why as a first approx-
imation we can consider z E 1 either when in the proptilve state the partial thrust becomes
equal to zero or when in the turbo-motor state the partial torque becomes equal to zero. By
analogy with the conditions of work of a blade element, the value of the advance ~== V’/iVZ
which corresponds for the whole screw either ta Q= O or C= 0, ddnea the effective pitch#?~
of the whole screw e

.. . ---- ..A

—

-. —

●
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We will designate by xhthe value of the relative pitch which corresponds tn the fiective pitch
of the whole blade screw.

X’”&h

Let us now pees to the calculation of the thrust-power L. deveIoped by the propeller and
the torque-power La absorbed by the propeller. We have

(140)

Going from finite differenoea to differentials we get:

(142)

where we htwe introduced the notations .

(143)
11=

J J
Qd(rq; l,= ~(?’9

(146)

The m.hxdation of the thruetqmwer Lu, hi--torque-power L=, and the tatal efficiency ?
is thus reduced to the quadrature of the two areas II and 22limited by the curves of q and qip
plotted against 9. The investigation of the conditions of maximum of the total efficiency is
reduoed to the determination of the maxima of the ratio ll/l,.

It must be notmi that the integrals 1, and 22are independent of fluid deneity. As a con-
sequence, for different fluids the values of these integrals will depend upon the physical nature
of the fluid only in the measure that the empirical coefficient k and the empirical function B
depend upon fluid viacasity.

It is also easy to see that, for a given blade-screw whose working conditions are varying,
the integrala 11 and Z, are functions of the advance Konly. In fact, for each blade element
q-d p are functions only of the corresponding angles of attack, the last being functions only
of tha relative pitch x==V/NE; in other words, functions only of the advance p= VIN, the
effective pit.thee H of the different blade sections of-a given sorew having evidently invariable
valu=. From the foregoing follows:

—.
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L 7!%4total e~cienq q of a given screw i8 a functibn only of the advance p.

(147)

2. The Tclti418

are aikofunctions only of t7wadvance.
Let us compare the work of a propeler when advrmcing b its work at a tied point. Start-

ing from the relation (116) we get

and on account of the relation (99) we have

(150) sr@!d(#) -.MP1’,,L=- Gt2-’/,dfPJtgtg (p+/9)d(fi) -’/,- ~:

using the notations

these lasttwo integrals being functions only of the advance p, as is easy to see.- The integraIs
1’1 end I’z are connected with the integrals Ii and lZ by the following relations:

(152)

For the work of the screw at a fied point the relations (149) and (150) go over into

(153) QO-m8QSf@(r’) -m%I:i71

with the notations

these last two integrals being, for a given screw, constant quantities independent of the angular
velocity %. k fact, do and g’.tg (P+ PO)are functions only of the angle of attack ~, and
the last is independent of fl.. The constants (II and C, are the limits, independent of the
angular velocity flo, toward which tend 1’, end 1’, when V tends toward zero. Ths two

-- — .-

constants Cl and q thus appear as two fundamental charactmistics of the dimensions of the
blades of the propeUer considered ordy. We thus see that the thrust Q. and the power .LOare

—

respectively proportional to the square and the cube of the number of turns of the propeller.
The differences from these square and cube laws experimentally observed are due, as has already
been mentioned in the introduction, on the one hand h the deformation of the blades, and on
the other hsnd to the approximation of the vdocity~quare law for fluid resistance} The
calculation of the thrust QOand the power LO of a screw at a tied point is thus reduced to the

1SW,for axsmple, the qmfmant.d resmch of CL Manrdn and A.
.—

Toufdnt, BnJIetJn & PIunWut Aarotedmfqna de lWtiwf4 do F&s
.

MClde II& Mu, Where for all the mmws &t&l the diffeaencca &omtho_ andcobe!awzhsve beencskmkted. ThwedMmeIus
am gwlerauy 6mcJL .-
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quadrature of the two areas C, and C?.,respectively limited by the curvm of g’O and g’Otg (P+130)
plotted against Tfand r~. Dividing (149) by (153) and (150) by (154), m get

(156) Q w I’ (p). La SP I’,@)
qo=~ *-’ ~“@ --q-

For Q=% these last two ratios are functions only of the advance p.~ The expressions (149)
and (150) show us that the thrust Q and the power La of a propeller can be written in the form.

(157) Q-iWI1w (jL); LO= LV?E12V(LJ
adopting the notations

If we develop 11”and 1,’ in powers of K,and take the first terms of the series obtained, we shall
fid the difterent approximate expressions which have been proposed by difbrent authors for
the representation of Q and Lo.

Let us now examine the different conditions which can be met in the quadrature of the
integrals II and 12. We will consider that for the angles of attack values near the corrwpond-
ing optima values are taken, so that we can admit the angle ~~0. Sub~tuting in the relation
(93) the vahms of w and H, respectively, equal h

aki cos p“

az“2*j ; l?=2a-rtgp

and on account of 13s Oand following PSZ we fmd:

d) ki Cosp

(159)
v l-~2B~z(p_9 ‘- -- -- ----- :

ptgp--- ~
7JJ hcosp” b h Cosp

tg(p–i)+%2sin’(p-i) 1 ‘k. 2sin’(q-i) tg p

—
-.

These last equations constitute two relations between the seven quantities:

v, Q, r

“ For each blade section working under given conditions, the quantities of the tit group are
known quantities. The equations (169) thus connect with one another the four quantities of
the second group. We thus see-that from the four quantities P, b, p, i, two of them can be
arbitrarily chosen, or, more generally, for a given advance IJ= V#/IV,we can submit the four
quantities P, b, q, i to two supplementary conditions, adopting, however, for the angleaof attack
values near the optima values while we admit fk O.

The simplest case for the quadrature of the integrals 11 and 1, is the one which corre-
sponds to
(160) Q-conSt; p=oonst.

. .. .
1G.~ endA.ToomM,fnthefr~ jnetma-for therermmtetfmofthermltiof- -onto, wethere.ttoQ,tQ~

- ... . ....

end~L.OforO.-hae~0fthe~ V/RR,M fnpropxWMIb the uWmee~-V/iV, whileQ. Efffel fn MSeqxdmentef resareb
on ef.rmrewwosw fortheir repwenfatkm the mtloaQ/VW ml W VW edmetfom ofthe mme prameta V/ND (COIIIX WM the rdatlon (14s)).
‘J7hmeIDVeeU@XScame to these mnelnefom by way of oondderetlont of dmilltude.
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because under such conditions we have directly

(161)

(162) T=P

expressions in which D is the blade=crew diameter. The
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condition q-const brings with it—
~ ~ COIIS$ and thus the condition (92) shows us that we have

V-const.

The screws with constant load coefllcienta along the whole blade produce thus a slip stream
with a uniform velocity in ita cross section. That is why we will cdl such blade-screws wrews
with unifm dip dream? The condition P=ccmst obligw us to adopt for the partial efh.iency
such a value as ‘can be realized for all the blade sections; the blade section with the lowest

-.

efllciency will thus fix the superior limit for the total efficiency. The screws wii% uniform slip
stream til thus always have a reduced efbiency. The relations (160) have to be used for
the calculation of the breadths b and the angles of attack i of all the blade sections of a screw

-——

with uniform slip stream.
Let us now liberate ourselves from the condition P = cond and see how the total efficiency

can be increased. It is easy to see that we have fit of all to adopt for each blade section the
optima angle of attack. If we now would like to maintain the slip stream uniformity, that is,
g -const, the values of b, P, and p will thus be fully fixed. But the screws of highest efficiency
will be obtained when the breadth b,is determined, not by the condition g -ccnst, but directly
by the condition of maximum of the total efficiency T. For the propellers of highest eftlokmcy
we have thus to seek for the law of variation of the breadth b tdong the blade which makM a
maximum the integral ratio ll/lZ =~. The problem of the research of the most advantageous
shape to be adopted for screw blades appears thus as a fully determined probbm. Remark I
of this chapter gives a first orientation in the last question. After these general considerations
we will now pass to the detailed study of the question of design of propellem which have to
work under given conditions.

THE PROBLEblOF PEOPELLBItDESIGN.

The design of a propeUer which hse to develop a given power tzndis destined b work with
a given advance ~ canstitu%, as it were, a double problem. For the evaluation of the work
of a blade screw we must know the exact dimensions of the blades. But the dimensions of the
screw blades are fixed by the strength of the blades, which have to be able to resist the forw
to which they are submitted. In the general case those forws can be exactly evaluated only
when the dimensions of the blades are Imown. We are thus obliged, for the calculation of a
screw, to adopt a priori its approximate dknensions~and by a series of calculations of the screw
work and vdcation of its strcmgth, to satisfy, by sumessive approximations, all the conditions

.—

of necessary strength and power demanded.
We shall in the following indicate a general method which will not only allow one to decide

a priori upon the principal dimensions of a blade smw hating to work under given cmditions,

lItlaevident thatwehareheredy todowlthumffotity oftitipv~y o. Theracevelod& has foritdexrmx@ion
. . . .

ra.=g) Y* (p+L7)

snd for ~oonsb whfohbrfnm wfthit oz-@xM% fil k ~t ~Y fff? (P+f)-- ti me = of~mnm me qmty 4 (PM) k
alwsysvarfable doncthebkdw Bntmm*hti fomtiWtitti *-~-~ =Mbtittiti~m* heucha~we

—

mhm&(@+#kemm6aar-tillM~ When?-mnst.
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.

but which will resolve, by simple reading on a diagram, the general problem of the screw selec-
tion. Let us thus consider to be known, as a first approximation, the blade dimensions of a
screw which has to work with a given advance AE V/N, and for which we have to calculate the
efhciency and the power it has to develop, For such a calculation, the quantities iii and ~, or
~ and ~ have to be known for all the blade sections of the screw considered, and also the
angles 7 of inclination of the zero lines to the chords of the diffarent sections. These empirical
quantities have to be determined from experiment performed at velocities of the same order of
magnitude as the one under which are working the screw blade sections in their motion relative
to the fluid, and in the same fluid as the one in which the screw considered will have to work,
Actually we possess only very few data on the abov~mentioned empirictil functions at flow
speeds occurring in blade-screw working. Especially for water we posecss scarcely any data at
all, the reason being that fluid resistance measurements in watar are very troublesome. By
analogy with expniments in air we can expect to get no more than a general idea of the order
of magnitude of the quantiticn k{, 13and ~,

The experiments undertaken up ta this time allow one to draw the conclusion that the lift
coefficients ~ do not vary much with the velocity, but that the drag coefficients ~ ssnsibly
diminish, which is an advantage for the bladescrew efficiency. The absence of suiliciently
accurata data for the empirical functions ii{, p and ~ is actually the onIy difficulty in the exact
calculation of blade screws. In the question of propeller design we find ourselves actually in
nearly the same condition as at the time when for the problems of strength of materiaLswe did
not possess sufEcient data on the coeftlcienta of rmistance amd the elasticity modulus. The
author hopes that this lacuna will soon be helped by the use of a new method-which will be
indicated in the following— based on the propertiumf the screw itself, which allows the meas-
urement of the quantitim k{, # and 7 in any kind of fluid, and in the exact working conditions
of the screw. We will thus admit that the empirical functions ?it,B and 7 have been evaluated
by one or anotlm method and cmsequently are known for all the blade sections of the screw
considered.

Let us designateby S(i) the system of the eflective angles of attack under which are working
the different sections of the blades of the screw considered. For a screw aIready built the system
S(i) has to be determined. For a new screw, to be built, the system S(i) has to be chosen,
and from its knowkdge the effective pitches, or in other words the effective blade angIeep of the
diflerent blade sections have to be determined in such a way that the system of anglw of attack
S(i) actually establishes itself when the advance reaches the given value, The angles of attack
of the system S’(i) are always decreasing from boss to blade tip. The system of angles of attwk
S’(i) to be adopted depends upon the propertim which we wish our screw to possess. If we wish
to build a screw of high etliciency only, it is the system S(iOP)of the optima angles of attack
which has to be adopted. But certain nmities of practice of blade-screw applications can
demand some departure frormthe system S(ioP). In the foUowing we shall come back in full
detail to this important qumtion.

The values of the effective blade angle P and the effective angle of attack i, which for a given
blade section correspond to one another are given by the relation (159) which maybe written

(163)
v (1–as) tg (p–i)
R-1+(LZ (l+az)tg@tg(p–i)

with

(164)
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in which we admit ~= O, that is, the system S(i) to be close to the systam S(iOP). The calcula-
tion of either p or i from this last relation (163) is almost impossible by aid of actual algebraical
methods; and yet the solution of this equation is necessary for the exact determination of these
angles. That is why I have been led to seek for. a nomogmphical solution, which, happily, oan
be given. I have made use of the method of paraUel-tangential coordinates of 31. d’Ocagne.

Let us first note, that for a propeller of good efficiency the quantity az is of the order of
a small number of hundredths only. This is on aocount of the fact that the amglesof attack i to
be adopted are always small and that the coefhcient kf, of the same order of magnitude for
air and for water, has also the value of some hundredths only. AIthough we adopt the formula
(164) for a.z, it does not follow that the linear law for the cueihient k{ must necessarily be.
adopted; in each case we can consider the value of k taken from the relation k= kJi. But it
must be noted that, for a given blade section profile and for the interval of the small values

a
of the aIlgle9of a ck whioh have to be used, the coeihcient k is constantto a good approxima-
tion. After as ining that az is a small quantity, let us develop the relation (163] in series
according ta the increasing powers of az and neglect the terms of superior order. The error
thus committed is out of consideration for the demands of practice of screw design. We thus
find:

jt*il+w[l+ tgqtg(P-i)]–lmo

.
and substituting for az its value (164) we get

V1
.

(165) FQtg(p –i) +a~ z s~V(~_i) [l+tgqtg(,-{)]-l=o

and finally.

(166) ~~3.f+a2N-1=01

using the notations

(167)

On the other hand let us consider the equation

(16S)

.. _

.-—

..-.

which we refer to the system of the X and Y axearepresented in @ure 26. When in this equa-

tion (168) we consider u and u as parallel-tangential mordinates, it will represent the point
(z, y) defied by the sheaf of straight lines (u, v); when we consider x and y as point coordinates,
it will represent the straight lines (u, v) which the point (z, y) describes. 2L is the distance

.,

between the parallel rmesof the u and v, cmnted along the abscisaae axis; ~ and ~ two arbi-
trary numbers introduced for the convenience of the scale choosing. The angle betwea fie

~Iftha8ngla6worenotI@-, wewonldha=”kmnd
., . . . .. .

+%i7%+”’&s#%k=r’-’
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ordinates and abscissae axes is arbitrary. IA ua establish a univocsl and reciprocal corre-
spondence between the terms of the equations (166) and (168) as follows:

A

which corresponds to -

(169)

(170)

Fm, 20.

The equations (169) represent in parallel-tangential coordinates a s@em of straight lines;
and the equations (170) repxwent in point coordinates two familiea of curves, with q and i as
parametws. Each straight line (169) which goca through the intersection of two of the
curves (170),or alI the curves (170) which intersect one another on one of the straight lima
(167), defines a system of values of VMl, ak, P, i which satisfies the equation (166). For the
tracing of the nomogram which gives the solution of the equation (166) and which L call the
ineideme nomogram I have adopted the values

tg(z, y)-o.75; ~-l; ~=12.6

The incidence nomogram is joined to this memoir} Its use is very simple; it is enough to
join by a straight line two given values oi V/rQ and ak, in order to read on the curves which
cut one another on this line the values of P and i which correspond to each other.’ Thus for
V/rQ=l andak=O.Ol; fori=5° we fmd P=52”; for P-55” we find i=7°, and so on, The inci-
dence nomogram gives thus the direct and complete scdutionof the finding of the effective blade-
sngle p of a bhde motion when its effective tingle of attack i is giv~, and of the findiqg of the
effective angle of attack i under which a blade section is working when its effective blade
mgle q ie known.

-.. --—
Ilroralftlledew~g tblatypeofnomogramw 1’- denoqpblat’ by M. Meorfoa d’Oongr@,$S57and66,p. f15,ml dso

\ VU,p. m.
lForits ussftfs goodtooovertha m-mwtth spfecaoftmc$ngr mrmr.
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After we have found for all the blade sections of the screw czmsidered the values of P and i
which correspond to one another, it wiU be easy to calculate the values of the function

for all the blade sections considered, while alI the other quantities which @ure in the expres-
sion of az are how-n for eacn section of a given screw blade. Knowing az we will calcuIate

.——

the values of the load coefilcients
-.—

2az
~=m

for all the sections considered. We shall thus be able to plot point by point the curve of q
against # (see Fig. 27). The quadrature of the area limited by this curve will give the value
of ll. For the calculation of ~ we shall have tu determine the partial efficiency p of each
section of the given blade, by aid of the formula

(171)

in which it is necessexy to take account of the dues of the angle p, which hss a sensible influ-
ence on the partial eftbiency, especially -when this angle is negative. The partial efliciencim
p once calculated, the curve of gJPse a function of # will be traced point by point, and its area

.—

will just be equal to 1,. fiowing 1, and Ii the vahm of the thrust power L= and the torque
power L= will be directly found for the blade screw considered. We have

And the value of the total efficiency ~ is equaI to

The totaI thrust Q produced by the blade screw end the totaI torque 0 applied to ite axis are
equal to

Q=+; @ ., —. —
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For the purpose of rendering easier the calculation of az and g, I have made a second non~o-
grrun, also joined to this memoir, which I cdl th loadnomogram, founded on a bssis similar
to that used for the incidence nomogram.

Let us take tha doc.imallogarithms of the expression

(172)

in which we h8ve pu h

M-
i Gosp

2 sin~(p-i)

and where c is an arbitr8ry quantity. We find:
*

(173)
10 az log-&_ ~ ~

-%f+-log7 .= -
c

Let us establish a uuivocal and reciprocal correspondence between this equation and the equation

logazwf; log+-f

‘“’:=&=* -
which gives

(174)

(175)

u-~logaz; V=&log&

z-Lj+;y=&log2c:i~’il --- ------------
12

.. J.

.._. -...——

. . . ... ——

For the tracing of the nomogram I have adopted: the angle between the axes of ordinates and
absc~ae equal to 90° (see fig. 26); 11=4=1 and log c = 1.6, with z= O. The second of the equa-
tions (174) represents a family of curves ha~ i ss parameter when P is taken x abscissa and
y as ordinate. Each point (i, P) of these curves projected on the Y axis is eitua~d on the
str8ight line (u, v) mrrmPonding b a s@eln of v~uea of a~ ~d ak, which with the foregoing
values of i and P satisfy the equation (172). l%e we of the nomogram .followe from this Iaat
remark. E8ch straight line joining a point of the az scale to a point of the ak scale cuts the Y
axis in such a point *t the compounding VdU* of P SJIdi are sh8ted 8t the intersection of
the parallel to the z =k Wing ti~h this point and the famil~of CUrVeSdefhd by the
second of the equations (174).’ Thus for ak=O.008; p=38°; i=4° we shall find az-O.04.
As g is a function of az only, I have joined tO ti scale of az a functional scale whi{h gives
duectly the corresponding values of q.’

It is to be noted that the incid~ce noqlogrqm ~ we~ ss jhe load nomogram are inde-
pendentof the fluid mass density 6. These nomograms might thus be used for the computation -
of a screw in any fluid, the physic~ natie of the fluid m intervene only in the values to be
adopted for the coeilicient k.

-.—,=.x .-. - ...-. s,kd,.,.. >..z
Il%mllthaiieti Wtypaofnomogramd ‘“”-

“+- J.._ .- _,_.. ....= ,-.. .::L . ....=.—..,=
m ‘JTrslUdoNOm@W~~,n@ ~.d’Om@e,PP.I@mdS%.

*‘rhoIoadnom- ~hm@-~~ f~ U-C - ~ - ~~ * ~Y -- *PP*mti for *UW of~ neor M’o.
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Smmning up the foregoing, for the ddgn of a propeller, we have to proceed as follows:
A certain number of sections, whose general configuration has to be fied, are ohoaen on each
blade. practically from four to eight sections are sufficient. Having chosm the angles of
attack under which we wish our blade sections to work, for the given advance ~= V/N, the
eflective blade angles P will be found by aid of the incidence nomogram. From theee values
we will be able to caIcuIati the quantities,

(176)

for all the sections eunsidered, arid thus will be able to establish the propeller drawing Sknowing
also the corresponding values of the angles-r which the zero lines make with the chords of the
blade sections. By aid of the load nomogram, q will be calculated and by aid of the formula
(171) P will be odculated. Plotting the curves of g and Q7Pagtit ~, by a qu~ature of tie
mea obtained, one can find II and 12 and thus ~, L= and q. The same method has to be
foUowed for the verification of the power of a screw already built, only the order of tiding q and i
is reversed.

The knowledge of the curves of g aud gfpgivesa complete pioture of the contribution of
each blade section to the work of the whole blade sorew, and thus allows one to tid in magni-
tude, as well as in sense, the load distribution aIong the blade, which has to be known for the
computations of blade stresses.

I must ilmdly remark that the n&~hborhood oonditiona can have an influence on the viork-
ing of the propeller; that is why when such an influence is to be expected it is good to build
the propeller with a small excess in dismeter, whose progrtive shortening when testirg the
propeller will easily allow us to bring the propeller to do exaotly th~ required number of turns
Nat the speed V. The diameter thus obtained will be the one which, under the given neighbor-
hood and working conditions, exactly corrqonda to the disposable power La.

The author has designed many propellers by the method above described and has cmminced
himself of the entire availability of the foregoing method, not only for the dmign of propellers at
their mtimum eflioiency, but also for the tracing of the total efficiency curve as function of the
advance P for a wide interval, inchding the mtium of the total efficiency. These amputa-
tions have shown, as already mentioned, that the lift CO~~~ &me VECTs~hfly ~u~ced
by the value of the flow velocity, but that the drag cocfEcients K decrease with the inoreasa of
the flow velocity. The last follovm from the fact that the values of E correspond@ to low
flow mdooities when used for propeller calculations always lead to values of the total efficiency
lower then those experimentally measurdz

~tar we have learned to calculate the power developed and absorbed by a propeller, we
shall pass to the general discussion of the fundamental problem of the scleotion or adaptation
of propellers.

THE THEORYOF THE UNIFORM SCREW FAMILIE9.

.-

, —

1 cdl uniform family a screw family whose blades can be made geometrically similar by a
twisting of all the bhde sections in such a way M b bring them all to have a zero pitoh. AU the
screws of a uniform family thus have, at homologous distanoes from the screw ads, geometridy
similar seotiona, but their pitches have different vrdum. I divide the sorewa of each uniform
family into varietie8. Each variety is characterized by the fact that all the homologous blade
saotions areworking under the smne angb of attack, and thus eaoh vtiety is dafined by a given

lmlrfJlth9tomcerIutheblade-wmwdrmtnSsOONtiV**tiofMmm*.
31willrexnemberlmethatthe_m(l~) attheattMenoyfs~y_mnt af~hy’pom TbmMthemkn18Wtiueoftie

tluu5&msbmeindkated,willmmeqwl totbeexpedmentdlymesnuedtbnnt,battheceIculatedeaMenoywZlbefonnfliudhweenwntwltb
tie~n~yom*ti *~r~t~t**~@~~@eS~ ~~dm~y~~.

—

--
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B@aU B(i) of angles of attaok. Three principal varieties have ti be considered. Z’h optimu
or muxima variety is the one for which aUthe blade sections of the screm considered are working
under the system S(iOP)of their optia angles of attack. The minor vuridy is the one for which
aUthe blade sections me working under the system S,(i) of angles of attack, aUsmaller than the
corresponding optima angles. The major variety is the one for which aU the blade sections are
working under the system S,(i) of angles of attack, aU larger than the corrmponding optima
angles. Each blade screw can be considered as belonging to a certain uniform family. It is
ttis last remark which makes the generality of the theory of uniform fdes.

To the screws of a given variety, characterized by a given system S(i) of angles of attack,
there corresponds for a given advance u- V/N, a system of effective blade angles P and a
system of effedive pitches H which we have learned to calculate. The screm of a vaxiety
defi.tmdby a system S(i) and having to work with different advances P are not geometrically
similar. Each screw of the optima variety, for the advance under which it has to work, will

FIG.!2%

necessarily work at ita maximum total effi-
ciency, beuauee for any other value of the
advance, angles of attack dflerent from the
optima angles will establish themselves, alJ
the partial efficiencies wiU thus be lowered,
and the total efficiency will therefore be r~
duced. In the same way it will be easy to
see, considering the curve of the total effici-
ency v as a funciton of the advance ~ (see
fig. 28), that a major screw for ita advance
wiU necessarily work on the left hand of the
maximum ~cianq and that a minor screw
vviUwork on the right hand of the maximum
ei3ciency. The last follows directly when

one remembers the law of variation of the angle of attack aIong the curve of the ~ciency
plotted against the relative pitch (see Chapter II).

We shall now establish the fundamental relations which unite the screws of any one variety
belonging to the same uniform fardy. Let us adopt for each screw of our vssiety a reference
blade section, which can be, for example, the one situated on the third of the blade length
counted from the tip. According to reIation (159), page 60, we have

(177)

with
~- 2uN; H= 2ur tg ~

● For all the blade sections of the screw considered the quantities r, al, and i are known, The
knowledge of the advance * by aid of the relation (177) the blade angle q of each blade
section; and, inversely, when the blade tingle q is known, the value of the advance under which
the given screw is destined to work can be found. The knowledge of the blade angle of one
blade section fixes thus the values of the blade anglee of all the other sections, the system
S(i) being known. For a given screw of a given variety the blade angles of aU the blade sec-
tiom are functions of the blade angle of one of the sections. Let us now refer the relatmn

(177) to the reference blade section. We thus can write

9-% “ 2%=f@~’ “’;)
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designating by Ethe ratio V/ND, which we win call the reiktive advance. For the reference
blade section r/D is a constant,and as ita bkle angle q is equal tcI

H IZ.D
@ P=~=”~ ~

we see that we necessarily have

(178) :-A(:)

Fm all -the8WeW8of a given Varie@of G14tifm family t?u 8t%?#of the rdim of the effective
@che8 of the reference tkde 8ectbne to the &rze8ponding dianw&8 are funotiam of the rekdive
advance E.

Let us designate by L’= the power absorbed for a given value of the advmme P by the screw
of our variety whose diameter is equal to unity. We have

(179) L’==T8P s‘d(P) =r 8VI’3
P

Let us firstconsider in our screw variety all the screws for which the ratio V/rQ has the same
value for all the homologous sections; that is, the screws whose di-eters me proportional to
the corresponding advances. l?or all these screws, for each homologous section, the quantities
al, q, i will have the same values; the quantities g and P will thus also have the same values.
Under such conditions the value of the integral 1, will be proportional to the square of the
diameter of the screw considered; that is, for any one of the screws considered we will have

the integral 1’, corresponding to the screw with the diameter equsl to unity. Let us consider
now in our variety all the screws of the same diameter, but for ~erent values of the advance
p. !l%e quantities q and P will be functions of the blade angles p only, or, in other words, of
the ratios H/r or H/D, the ratio D/r being constant for all the homologous sectkms. But
HID is a function of the relative advance g for d-l the screws of our variety; we thus will have

or

Vmying first the diametms for V/rQ = const and afterwards varying the advsme A for
D=const we will run through all the screws of our variety. We are thus brought to the
following conclusion:

For all the LmrewJ3of a given vuriety of a u@fmm fady the W&J of the ratios lPLdd V’ h
a function of the relative advana &

By quits anaIogous reasoning it will be easy to see that the total etliciency ~ of all the
screws of a givem variety of a uniform family is dso a function of the relative advance f only;
that is

.-
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The functions ~(~), ~(~), (7(:) are characteristic for a given screw variety defied by a
system S(i). If we calculate a series of screws of a certain variety we will be able to trace
point by point the curves

l?/~=Ex4(~); iV’La/ud V’==B(:); q-~(:)

For each system S(i) of angles of attack we will get a group of curms. We will arrive at s
full picture of the properties of a uniform family whan tracing a system of three groups at
least, of curves A({), B($), and C(H: A first group of curves, ~,, Z?l, (7,, for a minor variety,

4Z

?

I/

.
a.

.
t

.

a second group of curves, A, B, C for an optima variety, and a third group of cumes, Ai, B,,
(?, for a major variety. Such a system of curves correspondhg to a uniform family is rep-
resented in figure 29.1 This systmn of curves#ves the complete solution of the problem of
the sakwtion of a propeller. h fact, suppose w~ have to calcuhte a propeller to absorb .a
power La at the aclswnceP. The qusdity lVZLJr LTV will be cdculat.ed; and on the curves
B,, B, B,, will be read threa values of g= ~111D, from which will be deduced three diameters

IThtESguremmwndeb t Mform fondly of air-w of the “Domnd” tw with conet!mt couetructlve pitch alons the Made. See & Elffel,
—. . ..— — .

,( Noa~~~ ~~w ~ ]a ~~m de ]~~ ~ ~~~~ation ~~ *D ]a~mto~ d~A~te@~ athi, Pfs~ xxxIHn In fl~ ~ ~ ~~e H/D

ie referred to the constructive pftrh.
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D,, D, D,. To the three abscisae EwdI correspond on the curves Al, A, ~ three vah.msHJD1,
H/D and RJDz, and on the curves C.., 0, (73three valuea ~1,~, VZ. fiowing Dl, D, Da from
the ratios HJD1, H/D, HZJD2,we will find three vahm H,, H, H, of the pitch. Plotting on a
diagram D,, D, D, as abscissae and H,, H, H, as ordinates we will get by three points a curve
on which, by interpolation and by extrapolation (not carried tao far), we will be able to read
all the system of pitches H and diametm D of all the screws of the uniform family considered
which satisfy the conditions of given power La and advance Y= V/N} (Sss Fig. 30.)

We thus see that to the data L= and K=V/iV there corrqonds an infinity of propeue~,

among which we have to choose the most convenient for the application considered. The

folIowing ccmsideratione have to be taken into account. The eiliciency of major screws goes
.—. .

on increasing in a certain intervaI When the advance increases, md the efficiency of a minor ...

screw first increases when the advance decreases.
.——

Thus a propeller for a tug h~ b be a major
screw in order to be able to give good efficiicies over a large scale of loads. The propelIer of
a trans-i@mtic ship has to bean optima screw, for the maxima shb sfid and the number of —n
revolutiona of its engines. An airplane pro-
pelIer has to be a minor screw, to be able ta
maintain a high efficiency when climbing.
In practice we are often limited by the space
disposable for the propeller. In such cases
there will only be left to us to approaoh as
near as possible the most favorable screw
type.

When we have to choose the propehr
for a given application the great unknown
of the problem is generally the head resist-
ance or drag of the vehicle to which the pro-
peller has to be adapted. This is why one
must proceed es follows. We will determhe
either the minimum speed which we can ex-
pect from the vehicle and calculate for it a
major screw, or the msximun speed expectad
from the vehicle and citculate for it a minor

0’9

0
Em. m

screw. The testing of the vehicle with such a testing screw will, with full certitude, indicate
the speed which our vehicle can realize with the disposable power. If our first approximations

.—

to the speed of the vehicle should in the tit testing appear to be far from the observed speed,
. ..-

a second testing screw would have to be used. Once having found the exact order of the
vehicle speed maggitude compatible with its power, we will then have ordy to cakmlate the
definitive screw which corresponds to the conditions La and P = ~1~ and which this time
will have to be a major, optima, or minor screw according to the screw application consid-
ered. Proceeding as indicated above, we will with full certitude fid the very best screw

... .

which the case considered caq admit.
The demands of the strength of the screw blades will fix the limits between which diagrams

for screw seIection can be d.abliehed. It will usually be found necessary to mtablish a series
of diagrams for increasing power intervals. A series of such disgrams gives the complete
solution of the screw selection problem in its whole generality. For the important applications
of blade screws it will be good, after having found the screw dimensions by aid Of the screw

lIntha@ mm flkve=- p~moftia H~mtitiom of D,w_tim~A, B, ChaYe Mentmc&l.

—.
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selection diagram, to try by a series of calculations of the moclifled screw to improve ita qualities,

‘17heauthor hopes that he will have the plessure of seeing in the near future the spreading of

the use of such screw selection diagrams for difhrent uniform families, by aid of which will be

eliminated all thdifiicuhiee of the deIicate problem of selecting screws.

The screw selection diagram aIlows one also to judge of the influence of the variation of

the number of revolutions on the ticiermy of a propeller. lt will be advantageous to

use gearing only when the increase in ticiency is able h compensate the losses in the gears,

if only the sp~ disposable for the propeller or other cor.ditions do not oblige us to use gears.

It must be noted that, although the efficiency of a propdler increases generally when ita number

FiQ. 81.

of revolutions is decre~ed, this increase, however, is not very large. Thus for the speeds of
actual airplsnes included between 100 km.lhr. and 200 km.lhr., and numbers of revolutions of
the actual aviation engines included betwem 1,000 and 2,000 revolutions a minute, it is only
exceptionally advantageous to use gears whose losses me gener@y greater than the gain in
efficiency. The gearing up of a screw brings also ~th it an increase in size and consequently
sn increase in weight of the screw. On the disgram reproduced here (see fig. 31), by aid of
the screw-selection diagram of figure 29, for a number of revolutiona from 600 to 3,600 a minuta,
for an invariable power of 240 horsepower applied to the screw h, there are calculated the
efficiencies V, the diameters D and the pitches H of the whole series of corresponding minor
screws. It is easy to see that the dimensions of the propellers go on incretwing much more
rapidIy than the efficiency when the number of revolutions decreases.



CHUTEE Iv.

NEW METHOD OF MEASURING THE COEFFICIENTS OF FLUID BESISTA.NCE BY AID
OF THE PLANE Bu4DLiL SCIUNV.

.
In the last chapter, for the screw working at a fixed point we have established the

following system of formuk:

(105)
d 2ain’(p-io) . .

‘=%- ~i ~s (P +80)

(106)
tg (q -io)

fi-tg (p+po)[l +2 tg (p-io) tg (p+f?o)
* .

(107) V*=@#.tg((o +/3.)
-.

(106) Two == 2m#o tg (q + /s.)

(109) AQO= 2WSV02=2 LMMW:p0’ tt~ (p +&J

(110) ‘ A(70-2&A&WtP~ te (q +/%)

(111) pO$lOAcO=-v&QO

and we have shown that the angles of attack iOof the different blade sections are cmstant,
independent of the regular velocity of screw rotation, these invariable values of the angles of
attack being given by the relation (105).

Let us consider a screw defied by the ccmditione

I
p=Const

(182) a - cmlst
k{=const

all along each bIade. From these conditions it follows that

i. - Const;pa-Const
along each blade.

The condtion p=const expres.ws the fact that the screw bladm are not twisted, having
a constant bIade angle.

The condition a==wmst expresses the faot that each blade is limkl by two radial straight
lines.

The condition I{=const expresses the fact that all the blade sections are geometrically
similar. The thickness of the bladea must thus go on increasing from bos to tip proportion-
ality to the chetance from the screw afi.

I call pbne-radial mew a screw whose bkdes sdis~ the foregoing conditions (182).
It is easy to see that for such a screw the equations (109) and (110} can be direotly inte-

grated and we have
(183) Q.- 7raPJW tg? (fp +J%) [r: -r:]

—.

U*=’/,dP#l? & (P +1%) [%s –rlq(184)
107@S0-S.Doe.807,~15 225
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P2 being the screv radius at blade tip and rl the radius of the boss. The ratio of 00 to ~ is

equal to

(;85) ~=4/&(p+&r:... ------- _
0 r,d—r14

the
ing

We will zhow that the empirical quantities 1{ and p or K= and K,, which correspond to
blade section profile used for the blades of a plane-radial screw can be measuerd by tmt-

the plane-radial screw at a fixed point and measuring its thrust QOand torque CO.
In fact, knowing rl, r,, Q. and COfrom relation (185) we find the value of tg (q +i?.).

Knowing tg (P + PO) from relation (183) we find PO.
Knowing tg (w+&J and POfrom relation (106) we got tg(~ -i.).
Knowing tg (P+PO) and tg (p -i.) the relation .(105) gives the v~~e of ~i.
Let us designate by # the constructive blade angle, thatis, the mgle between the chord

of the blade section and the piano of screw rotation, by a the constructive anglo of attack and
by 7 the angle between the chord and zero line of the blade section considered (me fig. 32).
We have:
(186) P==*+’Y
and
(187) io=ce+~

*

l%. 82.

Suppose that, having meazured Q. and C. we have found

(188) Pi-l%=t+’y+l%=cl

(189) P- io=$+y-io=$-u=c, ‘

The angle $ being known, we will have
(190) a=$-c,

Knowing thus for each value of # the value of 24and the corresponding value of a, we

shall be able, by a series of tests made wit.@different values of $, to trace the curve of k{ as
a function of

ki= F(a)

The intersection of this curve with the axis of abscissae will give us the value of T, and we
shall thus be able h calculate the values of 130and iOwhich correspond to each value of I).

.

(191) BO-C1-*-7

(192) ‘io-~-$-7
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We will thus obtain aU the necessary data for the tracing of the curves of ki and B ss functions
of i; or, if we prefer the curves of K= and K~, these cm be directly deduced from those of
k{ and P.

We thus see that for the measurement of k{ and f? or K= and KWas functions of i, it is
sufficient h take snd plane-radial boards, whose cross sections have the profle to be studied,
and to fix them to a boss permitting one to use them as blades under diHerent valu= of the
constructive blade angles #. ilfeasnring by a series of tests QOand (?0for different values of

x of such a plane radial screw, there will be found, ss explained in the fo~oing, first tie series

of corresponding values of ~f as functions of a; afterwards, Y having been determined, there

wiIl be found the series of corresponding values of kt and p as functions of i.

I will not stop here ta give the detds of such experiments or to discuss the precautions
to be observed for the exactitude of theme asurements.

The importanm of this experimental method consists bt in its experimental simplicity,
since we have only to make messurementa upon a screw worm at a fixed point; and, further,
it I%the only method which aWw8 mecururementaat the same great value8 of 8peeii8ojfJow a@ in
exactly the 8ame fikde-8crew canditiom a in adua~ use; and this in any $uid, water, air, etc.
The use of this method WW without any doubt allow us to elucidate msny questions of tit
importance about fluid resistance at high velocitim and in diil%rent fluids.i

Although it is not my intention in this first memoir to treat the question of the screw
working at a fixed point, to which a separate memoir wiU be devoted, I will, however, give a
brief summary of the properties of the plane radial screw, which it will be interesting to note,
and which will show in what metwre the present screw theory can in reality treat, any case
of screw-working, including the cme at a fixed point, which has always been considered, up
ta the present, as the most difficult to investigate.

GE~ PEOPEM’IW OF THEPL4NE-IMIXAL SCREW WORKING AT A FIXED POINT.

When we h~ve to do with a blade screw working at a fixed point, its efficiency p. is the
quantity which measures for the screw when advancing its fan Josses. The losses of a screw
at a fixed point thus reduce to the vortax losses pt and resistance losses pr. For each blade
element vie have

(193) PF$-W(P+ PO)

(194) p,=l–po-p~=l –Po[l +2 t& (P+lilo)]

Let ~q examine briefly the conditions of maximum of PO. If we note that pa is an increas-
ing function of i. so far as POis nearly constant, and that POis a vary rapidly increasing function

of i for iO~i’, but that for io >;’ the variations of BOare small, it will be easy to see that the

maximum of P. w-M occur for G-i’ and 130e0. The conditions of maximum of the efficiency
of a blade screw at a fixed point are thus the same as for a blade screw when advancing. We
have

(195)
tg (p –i’)

Pa- =
.J --— —.. .

tgy[l+z tg$otg (p–i’)] “- -

In figure 33 have been traced by aid of this equation a series of curves of the efficiency p.- as

functions of p for different values of iO=i’. It is easy to judge by aid of these curves about the
maximum which the effioienq PO- can reach.

IAcmrdiag h an ogreement wlrfah hfu - made betwem the aathor and tha Natkmal Advimry Committee for Aeronaaff@ tha aathrx

. ..-

iuM~tiy w!thdmwnfrom ths Urdt@dStates Paht 05ce M px~t~t on Pk=~ screw% and hM thus sbandonolto the PabIIo
Dtitheus%ofthe Pkae—mdM szew h the Urlned states.
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When, for a blade section of a given profile, values for y and i. have been adopted, by this
fact the value of the breadth w5Ube tied. In this.same figure 33, by aid of equation (105),
a series of curves of the breadth ratio have been traced as functions of p for different values of
iO= i’, and wmsequently I?O-O. Ou the other hand, the lhdkg value of the breadth ratio is
fixed by the relation (134) of Chapter 111. The curves of the breadth ratio are thus limitad
from above, as a fit approximation, by the curve of sin P (see ~. 33).

‘f23

02

0./

o

Finally, on this same figure 33, for the purpose of a quick calculation of the slip velocity

Vo = do Po03 v).
has been traced a series of curves of p. tg p, as functions of p for d#lerent values of i. =i’, and
thus L?OSO.

It has to be noted that the curves of figure 33 are independent-of the fluid density.
L&us in formuha (183) and (184) put

(196) rl=cr, =?

l) being the diamster of the screw considered, and substitute $20- !kN. These formuh can
then be written:
(197) Qo-% ~ (1–c’) fiPo’ td Go+do) ~D4

(198) QOCO= Lo - ‘/5 u’ (1 -d) llp: & (q +150) N4D6

(199) = ‘f, T ~d Qo tg(to+Po) N..
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Let us give a quantitative evacuation of these last formike. According to figure 33 it
wilI be easily seen that we will have good working conditions adopting:

~=16”; iO==60;(z=0,25; PO=0,65

introducing these last values in the formula (197), (198), and (199) and considering PO-0 and ~

8= ~ (air density) and neglecting the high powers of c, we get

(200) Q.= 0,021 IPD’

(201) LO=0, 014 iW~s

(202) LO-O, 67 QOND

From the last foUows

%+-Fl— --––I v 1 ...1

1 I t ‘1 1 I 1 l...!”1:.[J j ““.. ,-~~~.... ...
.].Q/A+* “E’ @tigzp&a*...’ ‘ ~ ‘:.-b.“f w’ ?0

On figure 34 is represented according to the relation (203) a mriea of curves which give
QJLO in kilograms per horsepower for a plane-radial lifting sinew, as function of its diameter

~, and for cliilerent vdum of LO. The power Lo has been successively taken equal to 1, 5, 10,

50 and 100 horsepower. On the same iigure, by aid of the relation (204) have been traaed the

—
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curves corresponding to ~-must for diflerent values of i’V. We thus see that the thrust

furnished by a lifting screw increases with the increase of its diametqr, with the decrease of

ita numbar of revolutions and with the power. It ia thw the 8crew8of snudl power and large
diameter which turn slowly that will prwe the best lifting mews.

Let us calculate also, for the case of air-screws, thti blowing capacity. Let us dmignate
by U the number of cubic meters of air that a fan can blow in a second. We have

sTz

u= 2nrdrvo
r’

20

/0

o

FIQ. S&i.

and substituting for VOits value we get:

u=21rponotg (p +~o)
s

~dr;
rl

and integrating we iind

U=;(I –d) potg(p +/3.) ND

and substituting finally the numerical values adopted above, we find

V= 0,24 ATD’
and

r-””
g=a Z-J
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By aid of this last reIation the curves of figure 35 have been tiaced and they indicate the value
of U per horsepower as function of the diameter D for d~erent powers. A second system of

curves gives the corresponding numbers of revolutions. We see from these curves that for
fana, m we~~m for lifting 8crew8, ‘ii h i%e fans of 8maa power, brge diumetm and 8h rotation
thut furni8h the lieat Muw@ action.

The plane-radial sinew is thus able to furnish good lifting screws and good fans and its
simphcity makes it specially fitted for many applications.

Thus, for example, (see @s. 34 and 35) with a plane-radid screw working 10 turns per
second, that is, 600 turns per minute, we will be able to get:

Lo-l. 5 10 50 100 hp.
Dx1.4 1.95 2.50 3.10 3.50 m.

Q/LOzx8 6 5 4 3 kg./h.p.
U/LOcx6 - 2.5 L3 1 m?/h.p.

QO=8 3?3 50 200 300 kg.
U= 6 17.5 25 65 100 m?

In the practical realization of phm~radial screws one fl certainly not be obliged, since the

screw is not used as a measuring instrument, to adopt the condition 7q= oonst, that is, the screw

will be made with a thlcknws decreasing toward the blade tips. All the formulue established

in the foregoing can be used as a first approximation. h a memoir which will follow the prment

I will treat in full detail the different kinda of lifting screws and fana and indicate the methods
of their design.

GEORGEDE BOTHEZAT.

.-

—



NOTE L

THE THEOREMS OF MOMENTUM AND MOMENTS OF MOMENTUM IN THEIR APPL1CATIONTO TEE
STEADYMOTIONOF FLUIDS.

The theorems of momentum, moments of momentum, and kinetic energy have been called
the three univerd hmiwm ofmdiun by Paul Appell, in the sense that they can be applied to any
mechaniml system. The first two of these theorems are expressed by the following system
of equations: 1

dx
()$2 ‘z -xxx”

~ g@d#)=2z Ye

,& <) m% ==Xzze
r

( )& z“m$–y.m$ - ZZ(ZY.–?JX6)

“ & ( )
Z z.m~–z.m~ ‘ZZ(Z.X*-ZZe)

(

dy
$2 y“m~-~”m~

)
-2z(yze–2 Ye)

or, in vector notation: *

d z~v=p; ”.gzr. mvum(1) z

~being the resultant of all theexteriorfurces applied ti the system considered; Z= the gecmeb
—-

rioal sum of the linear momenta of the system; z r .m u the resuharit mcmimt of “momentum of the

system; = the iedtant moment of “tili the exterior forces: “thti-e Iait.ofienta “be@” tak~n “”-

relative to a point invariably comected to the absolute referenco system

Let us consider a fluid mass in a steady state of motion, and let us apply the above-mentioned

theorems ta the portion of a stream tube included between two of its orthogonal sections S1 and

S2. Let us calculate the increment of the fluid momentum included betweem those sections.

H, at the moment i the fiuid occmpies the portion of the tube between A’land S,, at the moment
t + d t this same fluid maaswill occupy the portion S’l S’, of the stream tube (see Fig. 36). The
motion being steady, the momentum of the fluid mass (111] common to both volumes S1 82 and
S’~ S’2 will remain invsxiable. The increment of the momentum of the fluid mass between
S1 and S2will thus be equal to the difference of the momentum of the fluid mass II and L ~is
last difhrence is equal to

..— —
2(;,. m+it-Jl. mldt)=dt~l(~v, -mlvl)

1sea“Tre.M de rrWm!que r8tione11.# Tome H,~ lhiltl~ parM,P801AP@r PP.19etM
. ...—-. .-

*ForVeatoraI w the notation ~~ Iuxizcmfal llne O* tho letter ‘mprewn@ th6 titi, for the motor produot the notation A=+ hort-
.—

zontal line ovrx both vmtora of the prodr@ fm the ~ product the notation ~.~; thst h, the mm notation az f= the algebralcal prcdrrct of
*O arabr qharltltk,

232
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where mi represents the fluid mass which flows in a “unit of time through an element ds of section

~1; v, the flow velocity rtt the same element, with similar notions for S,. we thus have

(2) ~z—= — —~ mv 2 (mvz –rev,)

By a fuUy malogous reasoning we find

(3) %-& T“’mV==

\
Em 36.

I& M be the
siderecl, and let us

(4)

FIG. 87

total fiuid msss which flows in a unit of time through the stream tube con-
define two vectors ~1 and ~~ by the following relatione:

-L .
.—

I
—.
iiw+=z~~
R=. hm, = xr,.~~ “ “““

When, to a sufficient approximation, vi and VScan be considered as uniform in the whole seotion
of SI and S, we shall havs

F@v, ; –Vz=<

the vectors VI and ~z being applied to the centers of mass of SI and S,.

On account of the relations (2), (3), and (4) the equations (1) tske the form

or
F+~– Mz= o,

R. F+ B,.iW1-~,=O,

and thie brings ue to the following theorem:
For a $uid mass in steady motion, the resultant wrench of all the exterbr forces applied to a

portion of a Streu?ntube limited by two m88 mtims and of t?teresultant scrtxu of the in@w mmnentum
@4 outjino 7n0mentum havinq to be taken in th mwme sense) h equal to zero. (13ee@. 3?).

lItfs.snpposed cmthfs~ethat tham@t@sm@w ofthaexterfor forcen tsreduced toams&ntfmce.

.. ———-

.— ..— ___

. —.—

-.-—_

.
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In the application of this theorem special attantion must be paid to the importance of
taking account of alilthe ezteriorforces. Fnr a stream tube portion these exterior forces are not
only t?knormal preseuws, but also the tangentialstress~ exercised on ite boundary surface.

A the preceding theorem can be applied to each stream tube, it will be easy to see that
we can also apply it to any system of stream tubes. We are thus brought to the following
theorem:

Fm a$U~ wba88 ~m 8i%u@ ~fi, t~ ?’e8U~ti@ Of lh.9 r88U~l(L7Jt w87t& Of & & &e~W fWCe8

applied to a portion of tlw$uid mass inchsed in any closedeuqthw.and qf the rewdtuni saw of tb
inJ2xn momentum (tlu outjiow momentum having to be taken in a reveme sense) h equal to zero.

When one or several bodies are plunged in the fluid mass conhined in the closed surface
considered, tti prewwvs of tiie ~odie-son the jluid have to be considered se extarior forces for the
fluid mass considered.



NOTEIL

GENERMIZATIONOF BllRNOtmlJ’S TEEOBEM.

I?or the determination of the pressures in a fluid, we possess the Bemouilli theorem, which
furnishes us the law of variation of pressure along a stream line and also along a vortex line. We
also know that the Bernoulli theorem is applicable to the whcde fluid, considering the Bernoulli
constant as invariable, wha the fluid motion is irrotational. But in the general case, when we
go from one stream line to another, the Bernoulli constant chang= ita value. What is the law
of variation of the Bernoulli constsmt in the whole fluid rnsss in the general case? It is the
solution of this quastion that the prasent note gives. We so arrive at the general solution of
the problem of the pressure distribution in a fluid mass.

Let us consider a fluid mass in a steady state of motion. Let us consider in this fluid mms
the stream line eurum and a40 ttwo other fam.ilim of fundanwntal curves: the nimnd ha,

defied by the property that the tangent at each po~t @ those curves comcidea with the prin-
cipal normal of the stream line through this point, and the bin.md lines, defied by the prop-
exty that the tangent at each point coincides with the binormal to the corresponding stream
line. The stream Iines, the normal lines, and the bmorroai lines forma system of triorthogonal
Curvw.1

Let us consider a fluid element contained in the elementary paraIIelepiped, whose edges
dr, dII,dp are respectively directed along the stream lines, the.normal lims, and tie bkorma~
lines. On these curve9 we choose the following positive senses: on the stream Iirm3,the sense
of the vdocity of the fluid particles; on the normal tics, the sense toward the center of curv-
ature of the corresponding stream Lines; on the binormai lines, the positive smse is chosen in
such a way that the trirectangular tnhedral (dr, dv, d?) H positive.

1‘rhe60~w hswforw~tiOtW:
--——

meskeamIfnee
&ll#d2——. —Uvw .— .-.,

Thenormdw

A-6*U
m~bimmdlines

‘d-$
IntimeeqnatfozwU,6,werethecampnentd of the velocity of the floid end A, B, C the detmnfnentd of the mebfx

[}

mvw
du dv dw

aia ai
For exsmple

A-*d;
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h% us apply the d’Alembert principle to the fluid element dr, dv, dp and let us mmuder,

for the sake of simplicity, the fluid as incompatible and having no weight (se~ fig. 3!3). The

rasult,ant of the exterior pressure on the fluid element has for components: ~

p being the pressure at the point considered.

t

r

no, m

Tho resultant of the forces of inertia applied to that element has for components

–$: 6 dr (iv dfl 810~ dr

– ~ 6 dr dv d13along dv.

O along dp

6 being the density of the fluid at the point considered, V the velocity and p the radius of the
principal curvature.

According to the d’Alembert principle we must have

This system of relations represents the equations of motion of the fluid referred to the tri-
orthogonal curvilinear system of stream linas, normal lines, and binormal linm, which can be
called the nutural curvilinear coordina$eaof the fluid, or, shorter, the natural ccwrdindcs of tfi.t
$?Lid.
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I. The equation (1) brings us direotly to the BernouilIi theoren; we have

dvar~+g=g+~zaar
-ap+w$=o

and integrating along a stream line, we get

(4)

a relation whioh constitutes the Bernouiili theorem, G being the Bernoulli constant.

w?

IL The equation (2) gives us the distribution of pressure slong the normal lines. Inte-
grating this equation along a normal line, we get

(5) Jp++’dv-=(?

This hat equation is susceptible of the following importmt transformation: 1

IXt us dwignate by u,, a,, ap the components of the vortax and by V,, V,, Vfl the
components of the resultant velooi@ V slong the directions dr, d~, dp, at the point considered.
We have

v. -fi v, -0; v’ =0

The relations between the double of the components of the vortex ~ and the components of
the veIocity are given by the dettxminauts of the matrix

(6)

we thus have

(7)

or

(8)

tByefdafreIetion@) tbe~dfstcfbatfon fnaalipstmam~~es~, Corexemplq smtbeeelcnlated. Fmsaehaealmdetioa
weeenedmit asaflmt appraxfmstfonthet theehnentsc4t hetmJectadeecdthe flafdp@icles ineeoUaa WemeIementg ate@ht&f~~
om!’res. Under eaeheondUimw intbeewtIon Sz thSnarmd Uneswfllbe mdMstmN@d Iinesnarmsl totheeemwsxtssmd ~fikSVfJ

*m~tihtfmaftheekaeJus oftheheJkddeItmJeutorfes tothe p!aaecd mmw rotetfon emd W the vehxfty d the fla.id pertides fn
he seetfon 8’. Sahtftatfag these velnes h eqaeth (&)from above we @

P-r+ww
or

‘sP-PC-T M-d(l-q

.—

..-.

-.

where pefethepm.nam on the boaadery sarfsee of the dfp etreem, 6 the fiafd denefty ocmeidered caaetaat for reesom eImedy mentkmed.
~o*tikw MWfiatimti dh*tim&, tie cnrveofk”lp wtllbetraeed esafuactkmofFs. Theqandrstare oftbeeart%ee
Nmftedbythfeoamew fllgivethekwof pmsvam dfstrlbutkmi neercsseeotfom l’hegenereI eoameof eachapresmm distrIhatfonfsmp*
eent#icm dgnm20f thedmtehspter. hramm’eeeoamteo eIcaIetSonIt woaIdbe nemmery tu know the mdif af prSao@l earvature e4 the
Wreem lines eI~ a mraud lfae-
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On the other hand (see Fig. 39)

(9)
?)v, vi% v
-F--F- ;

6%being the contingence angle. Substituting this last value of ~ in the relation (8), for an

integration along a normal line we get

10)
~p=vdv -

– – Z(dd
P

and substituting this last value of dv in equation (5), we get

(11)

\
FIG. 89.

The i.n~al of this last relation is susceptible of the following transformation:

S-6P -+y-
2 ——

2p#p
1

and equation (11) takes the form

s3VdV
(12) ~p+~;.o+

‘pa!~

which fixes the distribution of pressure aIong the normal lines.

We eady see hi the lad equation has the jbm of tlte Bern.ouilli equation, only the integra
which jguru in the secund member determines the variation ofth BernouW eon.stani wlw we go
jbom one stream line to another along a normal lina.
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If we put

s

6VdV
(13) AC= ~—_

2pr.d#
equation (12) takes the form

(14) @~=O+AO

We now see it is sufficient that w~-=O along a normal Iine-which means that on the
normal line considered the vortex iiiis disposed in the contingence pkme-for the integral AO to
be equal to zero and the BernouiUi constant to be invariable along this normal line. It is evi-
dent that u ~is zero when ~-= O.

.

The integral A(7can be mitten in the form

(15) s8dV
AC= 1 1——

2pl# v

and is then susceptible of the folIowing geometrical intqretation: The denominator of this
integral represents the difference between the inverse of the speed which the fluid particle wouId
have if rotating with the angular velocity 2UParound the center of curvature of ite instanta-
neous position and the inverse of the velocity F’of the particle.

Ill. The integration of equation (3) along the binormal lines leads directly to the con-
clusion that aIong those lines

.

(16) p= Const

thatisto say, inthe cme of a non-heavy$tcid, thehorma Ztinesare isdam Itwill be emily seen
that in tiie ca$t?of a heaq$uid h di.atributitm ofpremure ahmg the binorma~?ine8 W7 be h earne

aa if the$uid were immobile.
we F&osee that jbr the cwe of irrotational math of ajhid the binorma~h-a are ah the

inea of cundunt veLmitti8, the BernouiIli theorem being applicable to the whole flu-d mass.
The system of relations (11), (12), and (13) fully detarmims in the general case the dis-

tribution of pressures in a fluid maw in motion. This system of relations leads us to the
following consequences, which I ti indicate in general outlines:

I. It& enough to know the dhh%ution of pemure abng a int~ace cutting all tb birwrmal 1ine8
in order to know the distribution of pre88ure in tfie u?hdejiuid ~8.

This proposition is a direct consequence of the fact that the pressure is constant aIong a

binormal line.

11. On 6oth tides of a cortex iiq.ur, even thin, thre can exist a dijirence of pre8mmewhich an
be of 8&6h V&8.

To convince ourselves of such a possibility, it is sufllcient to repraent a vortex layer in

which the quantity
v– 2pwfl

has a small value inside the layer, which can happen without V or ap having excessive values.
Then, when traversing the layer along a normal line, the integd

can have a large value and consequential according to formula (11) the difference of pressure
on the two sides of the layer will be sensible.
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The conception of a thin vortex layer maintaining sensible differences of pressure allovw one
to understand the phenomena which take place in the slip stream creatml by the rotation of a
propeller. Let us follow a stream line in the slip stream (see%. 40), When we reach a point,
such as B, disposed before the propeller, the pressure p must necessarily be lower than the
exterior pressure pO,because the velocity is all the time increasing as we approach the propeller
aud at points such as Ai and Ax we have pressures very close to the pressure p. But when we
go through the plane of screw rotation, the pressure increama and at a point such as C disposed

i
Fro. 40.

directIy behind the propeller, the pressure p’ is generally greater t.hsn the exterior pressure.
It would be difllcult to conceive the existence of a diflerm.oe of preasureap’ and p..at points C
and ~, if it were not for the vortex layer, which ccmsequently must constitute the surface of
the slip stream created by the screw, and which we know capable of maintaining difEerenceaof
pressure. Without the knowledge of the existence of the vortex layer forming the surface of
the slip stream the pressure distribution sround a propeller would be difilcult to conceive. The
exact configuration of the boundary surfaw of the slip strwn demauds further investigations.



NOTE HI.

SHORT SUMMAR Y OF TIZE EMPIRICAL IAWS OF FLUID RESISTANCE OF AEROFOILS.

Let us consider a qdindrical surface generated by a rectilinear generatrix moving parallel

to itself along a pkme contour formed by two intersecting curve segments. Such surfaces are

generally calIed aerof~ in aerodynsmice. The orthogonal section of the aerofofl is celled its

pTO@. On @ure 41 is represented in plane and profle such an aerofoil of rectangular peri-

meter of breadth b and span L.
M us consider an wrofoil plunged in a fluid medkun and moving in the lsst, normally to

its generatricee, with a uniform and rectilinem velocity ~, or let us admit that a fluid currant
of uniform veIocity V is directed in an inverse sense on the aerofoil maintained immobfle.
In both CSSM,on ‘account of the principle. of relativity
of hydrodynamics, the aerofoil will be acted on by a re-
sultant fluid resiet.ante~ ~“en the aerofoiI has a phme
of symmetry normsl to its generatricw end the flow
velocity ‘W is parallel to this pl”~ej the fl~d resistance
~is then disposed in the plane of symmetry.

The fluid resistance 1?of an aerofoil obeys the follow-
ing empirical laws:

1. R is proportional to the area ~ of the aerofoil.

2. R is proportional to the square of the velocity ~.

3. 11 is a function of the orientation of the aerofoil re-

lative to the flow vilocity ~.

4. R is proportiomil ta the fluid density&

‘I!hese empirical laws are submitted ta the following

redirictions:

The proportionality of the resistance B to the area ~

holds true only for aerofoile of similar perimeters and of

the sane order of size. U we imagine a series of aero-

foile of breadth 6 whose span L goes on increasing, it will

be found that the ratio of R h A tends toward a certain

limit when the espect ratio L/b incresses. Practically

this limit is slready reached for values of the sapect

I
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ratio near five or- six. The existence of a limi~ for the ratio R/A depending upon the

aspect ratio is due to the fact that the flow runs off, es it were, from aerofoil tips. But

with increasing aspect ratio the tip influence rapidly decreases and the ratio l?/A tends to
.—

its limiting value corresponding to en aerofoil with in.tlniteaspect ratio. Thus, for a sufficient
aspect ratio all area elements like AA will be in practicfly identical flow conditions and the
tutaI fluid resistance R cti be mnsidered as the sum of equal psxtial resistances AR due to
each element U (see @. 41).

The proportionality of the fluid resistsme R to the square of tie vdocity W is true only .

for variations of Win certain intervals. The component R. of R along W is generally called

drag, and the component ~ of 2? aIong the normal ta W is called l@. It has already been
observed by experiment that the ratio RV/ P does not vary much with IV, but that the ratio
RJ W decresses with increasing IV.

167080-s. Dec.807,~i6 241
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As for the dependence of resistance ~ upon b orientation of the aerofoil in th~ flow,

the following facts are to be noted: There exist in general four orientations of the aerofoil in the

flOW for which the resistance ~ reduc~ to the dr~ l?= only, 1 cd 2H0 p~w I& plme pw~el

to the aerofoil generatrices snd containing ~ when A’V= O. It is by the orientation of the
zero plane corresponding to the entering edge that we shall fix the orientation of the aerofoil
relative to the flow. We will call angle of attuck or incidence and will designate by i the acute
angle between the velocity W and the zero plane adopted. We shall call zero tine the trace of
the zero plane in the plane of symmetry (see fig. 42).

At the present time it is customary to N the orientation of aerofoils relative to the flow by
the orientation of the chord of their profle. It must be noted that the notion of a chord is
defined in geometry only in relation to arCSof curves and in reference to an aerofoil it needs a

\/v
‘\.

/?

FIQ.4!2.

special definition. For a profile such as the

one represented in fi@re 43a the chord instinc~

ively adopted is the chord common to both

arcs limiting the profile. Rut for a profile

such as the one represented in figure 43b we

can draw two such chords. Finally, for a pro-

ii.le such as the one of figure 43c any straight

line crossing the profile could be with equal

propriety adoptad as the chord. we thus see

that what is commonly called the chord of a

profile is in reality a straight line arbitrarily

chosen. When it-concerns the experimental

measurement of fluid resistance of aerofoils,

the more convenient reference line has to be

taken. But when we wish to proceed to the

comparison of the results obtained, it is nec-

essary to have a standard reference Iine whose

deihition is based on aerodynamical or hydro-

dynamical facts. fie zero line introduced in

the study of aerofoils by l%u.1 Painled consti-
tutes such a uniform basis for comparisons. The right ~derstanding OFthe above explanation
is of particular importance for the bladescrew theory. ‘l!he conception of efictive pitch, which
is a direct consequence of the notion of zero line, at once clears up many mimmderatandinga,
such as negative slip, for example.

Finally, the fluid resistance is proportional to the fluid density 6. This resistance thus
depends upon the temperature and preesure of the fluid considered.

We thus see that the fluid resistance 1? of an aerofoil can be expressed by the formula

(1) R=k#AIW=&AIW
with

k~=~

In this formula, kf is an empirical function of the angle of attack which dependa upon the
perimeter and the aerofoil profile and upon the kind of fluid considered; A is the area of the
aerofoiI, or speaking more exactly, the area of the projection of the aerofoil on the zero plane;

●
Tis the flow velocity relative to the aerofoil. The formula itself is true only for a certain inter-

val of velocity variation.
.. .. .~ ..

1Thema @me8ham~ lntiuced fntotheStlldyOfkm Ofh titi Of@rOfoUaby

.
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For small @es of attack we can, with a sufficient approximation,

~2) R= MAW%=KAW%
with ka-K

243
—.-

adopt

For most aerofoik moving in air the coefllcient k has the mean value

(3) L=0,04‘= 23

the angle i be@ expressed in degrees, the area A in square meters, the velocity IT in meters
per second, snd the rmistance in ldograms. For mesn conditions of temperature and pressure
the coefficient K has, thus, for its mean vslue

.
(4)

L _.—
K=~~ = Qod”o?lzs = O?*O5-~ —

U the foregoiqg relates ta the mam@tude of the fluid resistsztce l?. As for the position and

orientation of the fluid resistance P of aerofoils the following takes place:

,,/

/7’ /’” @ -...
y

FIG.4311. !m. 43b. F[a.43(?.

We will fix the orientation of ~ by tie angIe this force makes either with the zero phine,
or with the normal to the zero pkne. The fist of thwe angles will be designated by f?’, the sec-

. .

ond by 9E or I% The sensw adopted M positive for these angles are reprwented in figure 42.
-. .—

These three sngles are connected by the ralations

In cases where no confusion will’ be possible, we @l simply write p instead of p= or I%.
We will fix the position of the resistance ~ rtdative to the aerofoil by the distance of ita

point of intamection with the zero plane counted from the projection of the entering edge on
the zero plane and wiU call this point center of pressure.

For intemala of varidwn of tle velocity lYnot too lurge, the angle ~ and the potitim of h cm.ter
of pre8wre are independent of the w&.4 of Wand arefunction8 of h angle of attack i o@.

W&m the center of pressure is defied se the intersection of the fluid resistance R and the
.—

chord of the proiile, this last center of pressure moves into Wty for a certain value of the
angle of attack. This takm place at the moment when R is para.llel to the chord. Such a
displacement of the center of pressure is due only to an inappropriate definition. When our
definition of the center of pmsure is adopted, this point tends towad a definh limit when
the angle of attack tends toward zero.
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In experimental aerodymanica it is customary ta consider the fluid resistance ~decomposed
into its two components the drag R= and the lift RY. We have

R===R sin (13=+i)= &AW EIin@=+i)
R.=Rcos (13=+i)= &AW’cos @E+i)

WheP the angle I?, is a function of the angle of attack only, we can write

FIG. 44.
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emremiona in which IL--called drag coefficient~nd KU--cfled ~t coefficient--are functions
of ‘theangle of attack i ~nly (for give; conditions of temperature and pressure). The quantities
K and I%are connected with the coefficients Z and L by the obvious relations:

(8)

(9)

The following f3guresgive a general idea of the couree of variation of the empirical functions
~ and f? for the case of aerofoils moving in air.

Figure 44 givw the curves of K and P’ as functions of the angle of attack i for a flat plata.
The empirical function K follows very nearly a linear law for the intmval of small values of the
angle of attack. The ratio AwAi is huger for smaUvalues of i thtmfor ku’ge vahes of the ]ast.
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For increasing vahm of the angle of attack, starting froLu zero degrees, p’ at iirst increases
very rapidly, but afterwards remains very nearly equal to 90° for 10° <i <170°.

In @gure 45 is represented the empiricaJ function P for a phmo-convex profle. The line in
dots in that we correq?omts to the flat pkk For a pkmo-convex profile the angle p rapidly
reaches the value zero e9 i increases from zero; afterwards ite variation is small. We d
desiggata by # the value of the angle of attack for which 5-O. This angle of attack i’ is an
important characteristic of a given profde in relation ta the efficiency which can be expected
from such a protie when used as a blade section. In @ure 46 is represented the curve of K
for a piano-conmx profle; the curve in dots corresponds ta the flat plate.

For most aerofoil profiles the empirical functions z and III have the stune course of varia-

tion. h magnitude the fluid resistance ~follo~ a nemly”Linear law for small values of the angle

of attack; for larger values of the an.gIe of attack the variations of li are more moderati. In
orientation, for increasing values of the angle of attack, the line of action of the fluid resistance
~ very rapidly rises out of the zero plane and afterwads remains sensibly normal to the zero
plane. This gened character of variation of the fluid resistance in ma=titude and orientation
is of ~t importance for the properties of bIade screws.

The %uidresistance R-of an aerofofl is the consequence of very complicated hydrodynamical
phenomena which take place in the fluid around the aerofoil and whose principal character-
istics me:

A. Above the aerofoiI we have a decrease of pressure; beIow, an increase. For most
aerofoils the decrease of pressure above is greater than the increase be.@w; so that the larger
part of the fluid resistance is due to a suction on the upper surface of the aerofoil.

B. From the tips of an aeroioil run off vortices called tip vortices.
C. Behind the aerofoil the flow is generally not steady, hut periodical. When measuring

the fluid resistance of u aerofoil disposed in the wake of another the flow in the wake appears’
as

of

deflected downwards.
For more details about all these questions, see the Author’s “Introduction to the Study

the Laws of Air Resistance of AerofoiIs.”
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NOTEIV.

GENERAL1ZATIONAND GENERALD1SCUSS1ONOFKU’M’A’STHEOREMONCIRCULATION.

The circulation theorem discussed in the present note wsa lirst indicated for a particular

case by W. M. Kutta.1 Soon afterwards, Kutta’ md Joukowski’ rmognized the gegmality
●

of the theorem. This theorem is announced as follows:
Whena rectihkxzr and unijorm~uid current, hav%g at injinity h? velocity ?, jbw8normally

to the generatrix of an in$nite qlih of any 8e~on, and wbn th cimuhztion along the contour
embracing the cylinder and eituatd in the phne of OTMof it8 orth~ 8ecti0n.9 ha8 a Jnite value
I, the component R“ of b rewtint pr~tire Of the Juid on h yhh, taken along the nmnd

. to ilk velocihJ and refereed b ~ unti of *th of ti m h e~l h the Hut of the ueibcity V,
the eircdation I and the ddy ~ of ih@ti; tb geme fTom RUto ~“h ctitient ~ith We 8enee
of the oirda%icn.

According to this theorem, the lift m-perienced per unit le@h of the cylinder is exprassed
by the following formula

Rti=a VI

We shall establish two f~d~enta~ and qui~ gen~al relations from which the circulation
theorem wilI appear as a particular case.

/=

m~. 47.

Let us embrace the infinite cylinder considered by any contour disposed in the plane of
one of ite orthogonal sections. Let lV be the velocity of the fluid at the point (x, y) of the
contour; u and v the components of the velocity W along the axis (see fig. 47); dz and dy the
projections of one element of the contour on the sxis. Let us designate by X and Y the com-
ponents of the resultant force of all the extarior forces applied to the fluid contained in the
contour considered, and let us apply the theorem of momentum to the motion of the portion
of the fluid considered. We thus have

(1) Y-fvdm; X-Judm
. .. .

1W. JL Kuau, ‘IIlludrlrt% Aeroz&tkim Mttte41nngen,:)Xi&’
. . . . ,.. . . . . ... . . . ..._= --J.. ~

s w? M. KIM, 11Ntzungzixmhte der KtirMlcbn Bwmls@m AazdamlFJdar Wisser.tschaftarb’)Munioh, 1910and 1911.
~N. E. Jcuhw6kf, ” Qeumetrlwhe UnW@mngcm nbzu die Kutts%ohe Strdmung~ Mrnko~~1910,19:1. @ d+J h/accqrz.e, ” Amdynupiqrq

Fsris, IM6, p. 1S9.
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the integraIs being taken around the contour and dm representing the fiuid mass whioh flows

per unit of time through one element of the contour into the exterior space. Let us designate

by ~ the current function. By the definition of that function, we have

(2) dm-ad+

and also

(4)

Substituting in the tit of the equations, (1), the value of dm taken from equation (z) we get

(5) Y=@d#=~&v(udy- vdz)
or, identically,

Y=J6[V (Udy–Vdk) +U’dx –U’dx]

=f&@.ik+udy) -+@’+d)(tc
and remarking that

(6) Udb+vdy-dl .

isthe flow dl along an element of our contour, we get

(7) Y=@.dI- S6 ll%c

and fia.lly, integrating by parts the first term of the secund member of that relation, we get

which relation holds for any contour and constitutes the tit of the relations we wished b get.

Applying that relation (8) to a cant-our along which
&

V-o; u=v=const
we eseily see that we have

(9) ~81du=O; @WiE-O
and consequently Y reduces b -
(lo) Y=L$VI

I being ~he circulation around the contmr in the direction of rotation of the X axis inta the Y
axis.

Following the same method with the second of the equations (l), we get

(11) .x== J&ud#=J&@y -like)

‘Ja(u’dy-uvdx-tidy +t?dy

==J-w+d)dy-ft-v(u.dc+vdy)

(12) X=-f6 TPdy –@all

——

. —-.

the hat of these equations cmstitutea the second relation we wished.
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Applying this last relation to a cmkmr along which

t)=o; u~v=const
we easily see that we have
(14) X=o,

all three of the terms of the second member of the relation (13) being equal to zero.

ht us now stop to note the exact interpretation of tlm relations (10) and (14). Ashasbeenindi-

oated, X and Yare the components of the resultant forms of all the exterior forces applied to the fluid

volume oontaine-d in the oontcmr considered. The-se forces are: fret, the pressure of the cylinder

on the fluid, which are equal and opposite to the pressures of the fluid on the cylinder; second,

the exterior pressures on the oontour. Let us oonsider a contour on whioh v - O; u= V- oonst,

and which is limited in one sense by two stream lines sufficiently distant horn the cylinder for

them to be parallel to the X axis, and in the other sense by two lines perpendicular to three

stream lines. Along the stream lines parallel to the X axis we can ecmsider the Bernoulli

constant as being effectively constant and in consequence the pressure p constant and equal

to the exterior pressure po, the velooity V being constant. Under this condition the component
along the Y axis of the exterior pressures on our contour will be zaro, and Y will represent the
reversed oomponent of the pressures on our immersed cylinder. The expression (10) is emse-
quently equal to the negative lift R&of the fluid on our cylinder, But if we consider a stream
line which flows near our cylinder, there must be some interior losses through viscosity along
this stream line because each immersed body givm rise to drag. The Bernoulli constant along
eueh a stream line must necessarily decrease, aud when we reach the side of the contour parallel
to the Y axis where the velocity V has already taken ita original value, the pressure there will
not take its original value pOj the Bernoulli constant having deoreased. The relation (14)
consequently expresses the fact that the component along the X axis of the resultant of the
exterior prewres on our .cadmr is exactly equal to the drag, and this holds in the ease when
the sides of our cuntour are moved to irdinity. In the led case, the exterior preasurcetend to
their limiting value p., but this is not reaehed, and the integral

always remains exactly equal to the drag. Kutta and Joukowski, who were the first to eetab-

lish the relations (10) and (14), have limited themselves to the consideration of a perfect fluid.

In that case, having no interior loesee, the Bemouilli constant has an invariable value along

any stream line, and relation (14) eqreases then the fact that the drag of an inunemed cylinder

is zero. But it is absolutely unnecessary to limit ourselves to the perfeot fluid, einca the theorem

of momcmtum, of which equations (10) and (14) are direet cunzequenoes, is applicable what-
ever the interior fore-estiding on the systam oonaidered are.

We are thus brought to the general cmwhsion that for any contour surrounding an im-
mersed cylinder the following general relations must hold:

(161 JP@-%=j’w@-*)-+w’dy-p’uu=-pf%iy- [W+ntq

whioh conned the lift and drag of the qlinder, referred to tit length of the last, with the flow
around this cylinder. In the application of these formulae, three particular casea have to be
distinguished :
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mmlied ta the contour of the cvlinder itself. The contour of the
AA

cylinder being a stream line through whioh we have no flow, we must have

l?p=fpd$; E. =f@v

which is the wise considered in olassica.Ihydrodynmnim.
II. The formulae are applied to a contour which consists of stream lines and normal lines

(for the definition of these linw see Note II). In that case the integrals whioh @re in the
second memb~ of the relations (15) and (16) have to be calculated otily along the tiormal
lines

IIL The Kutta caee

Rti= &VI: R*= fpd?i



NOTE V.

THE GEO~EY OF BLADE-SCREWDRAWING.

The tracing of the blade.screw drawing is based on some very convenient conventions,
used in practice for a long time, which, however, as far as I know, have never been statml
exactly.

For the tracing of a drawing of a blade-screw a rqffiemc radius has first-to be chosen, and
on this several guiding points are taken through which are drawn axes, which we will call
guiding mm, parallel ta the screw axis. Through the guiding axw are passed planes normal
to the reference ridius, which we will call gectwnul planes. The plane normal ti the screw
axis and containing the reference radius will be cane-dthe plum @ SCMWrotation, and the plane
containing the screw axis and the reference radiue. will be called the meridional pzane. In
principle the reference radius may be chosen arbitrarily—it is only necessary that the sectional
planes cut the screw blade—but it is convenient for all the guiding tcws to pierce the screw-
blade as far as possible. As for the number of guiding points, it is sticient practically to
adopt from four to ten of them.

The drawing of a blade screw may be established either by plane blade sections or by
cylindrical blade sections. The method adopted depends upon the process of screw manu-
facturing used. For some blade screws the difference between both methods of screw drawing
is negligible. If it is a drawing by plane blade sections that we wish to have, it is the blade
section by the sectional planes that has to be considered. If it is a drawing by cylindric~l
sections that we wish, we then have to- pasa cylindrical surfaces, having for axea the screw
axis, going through the guiding points and tangent to “the sectional planes, and to consider
the sections of the bhdes by these cylindrical surfaces, developed in the sectional planes. All
of the following relates to both methods of screw drawing.

Figure 48a gives a general view of a screw blade whose reference radius Ol? is supposed - “ -
to go through the point of the blade farthest from the screw axis and is entirely contained in
the lower side of the blade. For the sake of cleargees in the draw@ only the guiding. pointi
pl and pz are represented, through which are traced the guiding axm al al’ and ~ a,’. The
plane blade sections are dwignated bys, s,’ and ~ 8,’, and the cylindrical blade sections by
G G’ and c>G’. It is assumed for simplicity that the cylindrical blade sections developed in
the sectional planes coincide with the plane blade sectiuns. Let us extend the chords of the
blade sections considered and take on the intersections of the sectional planes and the screw
rotation plane lengths such as pi Zl; pi Ilr; p, Za;p2?Z’ -. .--.-, respectively, equal to rl, Zrrl,
r,, 2rrZ ------ ; the quantities ri and rs being the distances of the guidhig points from the
screw axis. The chord of each section will cutmff, on the perpendiculars to the screw rotation
plane through points such as 1’ and 1, Iengtbs respectively equal to H and H/2T designating
by H the constructive pitch of the sections considered>

First generation of the wrew drawing. —The sectional planes, containing the blade sections,

are turned through an angle of 90° around the guiding axis in such a way that the heights

H1i2r, H~2T, etc., come on the screw axis. The sections 818t’; 8, SZ’ ---------- will take the

positions t, t,’;~ ~’ ---------- and wdl ill. be brought into the meridional plane. In figure

IWhen a guklfng axis doca , ii-h “i-e-son’ of the &oK:i;e%%ll%x&%’tLt -&: lt’!il frorn”tti”m poiiltihT” ‘; “z --”=;&=
A’

the COmtrllCttOIlindiOat@ ~bOVOhed tO b8 mad9 in O& tO tid the IMtth.
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48a it has boon awmmed that we have to do with a blade screw of constant constructive pitch,

and thus 17,j27r=HZ12r . . . . . . . . . . . In such a way is obtained the screw drawing, represented

on figure 48b, whose geometrical properties are evident. Thus when,we go from the sections

of the blades to the sections on the screw drawing @e projections al al’; a, at’ of the blades

on the meridional phme remain unchanged, but the projections of these same blade sections

of the screw on the screw rotation plane are turned through 90°. (See @ 48a.) Tha screw

drawing allows one to see at once au the blade dimensions. ~ we project, on the screw draw-

ing, each section on the corresponding guiding axis we wiU get the projection of the blade on

the meridional plane; if we project these same mctions on the reference -radius and turn thwe

projections through 900 we will get the projection of the blade on the screw rotation plane. (Sac
fig. 48d.)

The screw drawing is genertdly completed by conventional representation of the distribu-
tion of the maximum blade thickness along the bhile. (See fig. 48c.)

By aid of the screw drawing, one can directly obtain the templates necemary for screw
manufacturing. It is sticient for that purpose to trace on the screw drawing two straight
lines parallel ta the reference radius. On figure 48c templatw, one above and one below,
have been traced. The templates corresponding to one blade face fixed normally to a board
on which is traced the projection of the blade on the screw rotation plane will give a space
picture of the blade face (See fig. 48e.) If we make use of cylindrical blade s~ctions, the tem-
plates have tit to be bent according to the corresponding radii.

In figure 49 is repreaenti the general case of the screw drawing; the screw blade is assumed
to have a general cmwddown shape. All the details of this drawing are self-evident.

Second generatwn of the 8crino iirating.— Irwtead of rotating the sectional planes, we can
bring them to coincide by a translation parallel to themselves, effectad in such a way that
the bases ?I, Is---- -. of the height H1/2r, ZI#U -------- described in the screw rotation plane
a straight line going through the screw a- and inclined at 45° to the reference radius (See
fig. 60.) This construction, as well as the foregoing, gives directly the connection between
the blade screw and the screw drawing. In @ure 50 it has been assumed that the constructive
pitches of the dtierent sections increase from boss to blade tip.



NOTE VI.

SOME CRI’J!ICALREMARKS ABOUT TEE BLADE-SCREW INTEGRAL THEORY.

.4s has already been mentioned in the introduction ti the pr~ent memoir, the general

blade-screw theory can ody be an integral theory. In the pment note I will Eve the general

outlines of the blad~crew integral theory. This will alIoTv one tQ judge bettar the blade-

screw differential theory developed in the actual memoir.

In its most general form the bladescrew problem can be stated as follows: bt us con-

sider a blade screw rotating in a fluid with an angolar velooity Q around its axis and advanc~~

with a speed T alo~u that axis, and let us suppose, for one moment, our blad~crew problem

to be ffly solved; that is, let us assume that we lmow the exact distribution of the partial

thrust AQ and the partial torque Ac along the screw blad~. Two sides of the problem ha-re

to be distin@shed. Fmt of all, lmowi~m A~ and AO as functions of r we have to find the
exact flow around the blade screw. ‘his will be the hydrodynmnicd part of the problern.

~terwards, havirg found the flow and thus lmow@ onctly the stream running on the screw

blades, we can seek for the dimensions and shape which have to be given to the bIades, so that

they reaIize the asmmed system of partiaI thrust AQ and psrtial torque AO. ‘17hisis the tech-

niud part of the problem. When the assumed system of AQ and AO lie in a practically possible
r~me, and when we know the flow around the screw, it is always possible to give to its blades

such size and shape that, for example, the. assumed A~ will be realized, but the AC necessary
to produce the assumed AQ can come out diilerent frum the assumed valuw. All depends

upon the losses which will take place. ~Tnder such conditions we will be brought to modify

the first assumed system of M?, recalculate the flow and introduce -u- in the size and
shape of the b~ades, and so step by step approach nearer to the conditions of the problem.
In this way, by a successive determination of the flow and calculation of the tie and shape
of the sorew blades, redetermination of the flow and recalculation of the blades, we can reach
an agreement between the hydrodynamiml and t=hnicaI parts of the blad=crsw probkm.
The forego~” constitutes the most general statement of the blad~crew problem.

Let us consider the hydrodynamical part of the problem. We ti make only two as-
sumptions: We will neglect tie periodicity of the veIociti* in the slip stream and neglect the
interior losses betw- the sections ISJS~,SS and S’S’, SRS’. These losses are vary small in
comparison tith the other 10SSSSwbfi OCCIW h MA+crew worhg; and corrections for the
p~odicity of the sIip stream velocities can alwa~ be introduced post factum. After the de-
tailed explamtiom wtich were given k the fit cbpter of this memoir, 1 will allow myself

to be very brief ~ the foll~m statement of the g-ral scheme of the most general blade+
screw theory:

(kmdition of flow continuity in the slip stream

(1) Alkf=~~(~+w)=~~B(~+u’)

From which follows

(2)
As V+v” rdr

Z!7”~ ‘r-
We also have

(3) A1=AIW = 6AS(V+ v)F

(4) AI= A.ilfr”2= ~As(V+v)#~
and

(5)
AI+

o “P

-.

,.-——

-.
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The theorems of momentum and momenta of momentum applied to the slip stream lead

to the ralations

(6) Q= EAil.fVU-XAL!lm(pO-p ff)UF

(7) 0= XAIati@ = 2AIc0’ = LJ

and also
(8) AQ=AhW-ASa@o-pU)
(9) AO= AI”d ~ AIw’

so that

(lo) Q= 2AQ; 0- XAO
and we also have

(11)
AQ

AP”~=-P’-P

In the limiting case the sections SS and S’S’ are considered to be very close togethar.
According to Note II, the pressure distribution in the section S’S’ is given by the rela-

tions

(12)
J

p’ =pac+8 ~tim+~dr’

(13)

(14)

where p“C is the pressure in the canter of the section i3flS#and R“ the radius of that section.

Let us apply the Bernoulli theorem to one stream line of the slip stream. In the in- t
draught the Bernoulli constant, which we will designate by B, has the value

(15) B.po+~

When we cross the area swept by the blacks of the screw the Bernonilli constant undergoes
an increase equal to

(16)
Ww’a

ABEUAp+r

so that in the outdmught the Bernoulli constant hss for its value

(17)

Consequently for the section S“ISmwe must have

(18)
8Va WU’* 6(V+vN)s+&%na

B+ AB-@O+~+~+d(V+v)vU -$jPo-P’)” P’+ g — 2

or, aftar self-evident simplifications,

(19) ()&)@ v–$’t%’%’-T(wu-w’)-@o-p’)(l-$)
This last relation is the fundmwntd clhm@rMc quation of thOflow in the slip stream of a

blade SOrOW.
In the hydrodynamioal part of the blade-sorew problem the fundamental variable is r

D()~r~3

The data given are the funotions AQ and AC. The unknown funotions, which have to be found
as functions of r, are
(20) r“, p“, w’, MU,u, 09



THE GEN33BAL TEEORY OF WADE KIREWEL 26Y

This makes six unbown functions, for the detcmmirmtionof which we have the six equations

(19)
()

&# &
‘T@’-”’) -@o-4-%)

W20’

(21)
J

==6 %%’P@ ,,

~22)
A(7 .. .... . ... . .

“=6( V+V)AB?

(23)
+

@*-=@l+

‘Q-@aa(v+v)vu-$@ o-#)(24) D
(25)

v-l-t)” rd?’
--nF”7aF

with AS’= 2iITdrand AS”= 2#dr”

The foregoing system ocmstitutee the fundamental system of equations whioh fully deter-

mines the flow around the blade screw in the most genersl csse. Owing to the integral rela-

tion (2 I ), the solution of this system of equations can be found only by a method of suooessive

approximations, and thus is very laborious. Thler such conditions it is natud to seek for some

=sumptions, which being very close to the red conditions, oould simplify the foregoing system

of equations. F’or hat purpose let us discuss the variation of the ~d member of the equa-

tion (19), which we will designate by (3.

(26)
* Lw%f

- ~ ((on-U’=-’’’(l-%)
For the tips of the blades we have

r“-=RH audpU-pO
and consequently

(27)
~ h%’

=-~ (w” -co’)

but se w“ > w’, we wdl have

(28) t7>0 andv”<2v
For the boss we have

r“=o; pM=p@=
and thus

(29) #
--@o-@-%)

and consequently

(30) (2<0 andv’>2v

‘1’hus G is positive at the tips and negatiTe at the boss. Consequently, between tips and boss
there must nemsmrily exist a blade seotion for which G= O snd consequently rigorously
(31) Vff= 2V

On the other hand, it is easy to see that starting flom the blades sections where vu= 2V
the quantity @ incresses generally in magnitude to tips and to boss. But at tips and boss Q
is still a small quantity. In fact, at the tips G=~w’ (a’- o.f), but es w’ has generally a small
value and the dillerenee (wr—at) is negligible, so far ss the radial vdooities cm be neghx%ed,
G comes out to be small. At the boss C?= – (p. –p’=) (I-~’/@, but tie pr-~e ~-
ference (p. – put) beirg generally negligible, owing to the fact that w’ is smaU, and (1- AJS’#U3)
is in maggtude smsller than the unity, (? at the boss is also small.

16TCIS0-S.DOG607,6~lT

—
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Thus it is at boss and tips that the difference betwem V* and 2V reachm in magnitude ita

biggest vahms, but still here this difference is small.

We are thus brought h the conclusion that in the most general case the flow in the dip

stream is such that very nearly

(31) VM= 2V

for the whole cross section of the slip stream. This last relation expresses the fact that the

rotation of the fluid in the slip stream has only a very slight influence on the trandatory motion

of the same.

After we have convinced ourselvm that the relation (31) holds, it is easy to sea that to, a

good approximation the flow conditions come out to be similar in the section fM’ and .flmil’.

This fact is a direct conmquence of the relation (31) for a blade screw working at a fixed point;

in other cases for the similarity of flow conditions it is only necessary for v to be small relative

to V or to have its variations small along the slip stream cross section, as has been shown in the

first chapter of this memoir. We thus can consider, remain~~ still close to real conditions, that

(32)

and consequently

(33)
fir r

d~”~ or rti= cr

where c is a constant.
It will now be easy to see from the relation (26Lthat the condition G-O for any vtdue of r

between r ~ Oto r= D/2 can only be Batisfiedwith

(34) u’=# andp W=pO

for the-whole crow section of the slip stream.
We are thus naturally brought to the hypothesis made in the first-chapter of this memoir.
To evaluate, however, the influence that the pressure difference in the section S&Sa can

have on the blade-screw working, one oan proceed as follows: As W“is generally a small quafi-
tity, let us neglect its variation along the slip stream cross section. Under such conditions,
from the relation (14) we will fid

~“a(~w’—~s’)po-p”=a x

or

PO-P’
“r”Y”’($-’)

and on acoount of the relations (32) and (33)

(35) PO–P.Y.8? &(:,–l
)

The equations (8) and (9) can thus be writtan

(36)
()

r%wn Da
AQ=C3AS(V+V)V”-6AST - ~T–l

(37) A~=6As(V+v)r%d

Comparing now, se in the first chapter, these last values of AQ and AC with those obtained
by the direct consideration of the aotion of the strewn on the screw blades, that is, bringing the
hydrodynamical part of the bkde~crew problem into agreement with the technical part, we find

()
~suf; D2

CUS(V+V)V’-MS -~ ~–l =nk$tiw’ Cos (p+@)

MS( V+v)rh’ = nrk@A W’ sin (P+ g?)
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Proceeding now with these equations exactly as was indicated in the fist ohapter, we will finaIly “
find

(38)

(39)

()E-l .@
T7%-4* 4P

1

2( Y+v) ‘-% (fP+P)” &’”2*

These hwt equations are fully similar to the equations (46) and (47) of Chapter 1, and only con-
tain the complementary term

which expresses the influenca of the decrease ~of pressure in the section S’S u produced by the
rotation of the fluid in the slip stream. But as this complementary term appears to be of second
order compared with az tg(q + ~), which is a very smalI quantity in most bhde+wrew applica-
tions, it comes out b be negligible.

We are thus brought to the conclusion that, from the most general standpoint, the only

system of equations for the blade screw which mm be reasonably adopted is the one estabLished
in the fist chapter of this memoir.

The foIlowing has still to be noted. As far se the race vekity u is concerned, exactly
spedcing we have !
{41) co= ‘— . . .

2

In fact, by its definition tiO is the work communicated in a unit of time to the fluid by the

bIade eIement considered, in its rotational motion. And this work must be equal to the corre-

sponding rotational kinetic energy of the fltid; that is, wAC=I ~ MJa because the corresponding
WO1k vAQ of the thrust has iti equivalent in the increase of pressure Ap produced, when cross-
ing the area swept by the screw bladw. But m AG=AIu1 we have

UAC=ua’A~= ~AIur=
and thus

u’
u=—2

But when the radial velocities are neglected we have U“s u’, and consequently

(42)

This gives for co a SlightIy increased value.

‘When we neglect the decrease of prmsure in the section AS6i3’, this brings with it a slightly

increased value for AQ, but when simultaneously we use for a the value (42) we obtain a certain

correction of the neglect of the decrease of pressure, because a slightly greater value of u cb

creases SIightly the angIe of attack {, md thus decreases sIightIy AQ. Under the hypothmis

made the value (42) has also to be adopted for co, in order to have a correct energy bakmce,

because when the decrease of pressure in section SULS” is neglected and thus the translational

motion in the slip stream considered independent of its rotational motion we have

vAQ= ~A~vU=

and consequently we have to take

UA 0=- ~AIDCI)“

that is, CO”==2w All these last remarks concern only differences of second order.
The foregoing critical discussion of the blad~crew problem, from the most general standp-

oint, shows us the value of the system of equations established in the tit chapter of this
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memoir. On the other hand, how convenient this system of equations is in its practical use
follows in full evidence from the results obtained in the present memoir,

I will also remark that from a practical standpoint the square of az can be neglected in

many of the formulae of the actual memoir.

1 will finally give a numerical evaluation of the magnitude of the departure from unity

that the ratio 2V/VNcan reach.

Introducing, in a first approximation, the value (35) of the difference of pressure (p. - p’ )

in the relation (19), we get

and, taking into account the relations (32) and (33), we tind

(43)
2V ~ D%W’S

?— ( )(
=— . ~ 2&0,25 =E 2&0,25#la )

with E=~-- -- -. .- . ._. . .

To find the order of magnitude of the ratio D’w’’/va’ we will use ~uatkms (48)and (49) from
Chapter I. Dividing (49) by (48), we find

Remembering that H= %-r tg P and considering #s O, we get

n%” 4(1+ W) ’H’
-Fs”—mf——— ““””“““ ““““””

... ..... .... .,. ..-

Concerning the ratio (1- &)/d, we have (1 – d)/ds0,05 when advancing and (1 - &)/N-l at
a fixed point, so that the quantity E comos out to be of the following order of magnitude: For
a propulsive screw with a2s0,1; H/Dz0,75 and (1 – @)/@=0,05 we fmd

ESO,O1

For a helicopter or lifting screw we have az= 1; (1 – d)/dsl but necessarily n/D small. If
we take H/D~0,3 we find

EsO,l

The quantity E reaches its greatest value for a propulsive screw working at a fixed point. With
~~1; H/D~0,75; (1 – ~)/~~1. We ~d

EG0,8

Using the second of these last values.we get

(
$=1+0,1 2;, -0,25)

For r= O and r=- D/2 we find 2v/v”=0,975 and 2v/vRsl,025; for values of r between r = O md
r= D12 the departure of 2v/v0 from unity is still less; for TID=0,354 we have 2v/vWE 1.

The departure of 2v/v” from unity thus does not gexiera13yreach 3 p. c. (and this only at
hoes and blade tips), and is consequently fully negligible. For a propulsive screw when ad-
vancing with. b_ O,Ol, it is absolutely negligible. Only for a propulsive screw working at a
fked point it may reach, at tips and boss only, 20p. c., which is still negligible in a first approx-
imation. We thus see in full evidence th~t the relation

vn=2v
4

although being in the general case only an approximate lnw, constitutes, however, a remmk-
able approximation.

GEORGE DE BOTHEZAT.
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